
MISTA 2013

Combining Monte-Carlo and Hyper-heuristic methods
for the Multi-mode Resource-constrained Multi-project
Scheduling Problem

Shahriar Asta · Daniel Karapetyan ·
Ahmed Kheiri · Ender Özcan ·
Andrew J. Parkes∗

1 Introduction

This paper briefly describes our submission to the project scheduling challenge1. The

full description of this problem domain can be found on the competition website and

elsewhere; however, for completeness we briefly summarise it here. The broad aim is to

schedule a set of different and partially interacting projects. Each project consists of a

set of activities. The activities must respect a set of (hard) precedence constraints and

project release times. Also the activities use resources and the appropriate resource

limits are also hard constraints. There are basically two different ways to distinguish

resources. Firstly, they can be either renewable or non-renewable. Renewable resources

are ones that are available again at their full capacity whenever current activities stop

using them, for example, they could be some machine. Non-renewable ones disappear

on usage — an example could be fuel where one can take any amount of fuel, but

only until the tank is empty. The second distinction between resources is that of ‘local’

resources that are associated with one of the projects, and ‘global resources’ that

are shared between different projects. In the competition, there were no global non-

renewable resources, and so the only interaction between projects is from the global

renewable resource(s). A complication is that each activity actually can be performed

using any one of a set of ‘modes’. The mode determines the set of resources used by

the activity and the duration of the activity (though note that the modes do not affect

the set of precedences). A solution consists of an assignment of mode and starting time

to every activity and that satisfies all the precedence and resource constraints.

Given a solution then each project i has an associated makespan MSi which is the

time from it being released to the time the last activity is completed. The primary

objective is to minimise the “Total Project Delay” (TPD), which (up to constant

terms) is the sum of the makespans MSi for each project i. The tie-breaking secondary

objective is to minimise the overall “Total Makespan” (TMS), which (up to a constant

term) is the finishing time of the last activity.

University of Nottingham, School of Computer Science
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK
{ sba, dxk, axk, exo, ajp }@cs.nott.ac.uk
∗ Contact Author

1 http://allserv.kahosl.be/mista2013challenge/

http://allserv.kahosl.be/mista2013challenge/


In designing an algorithm, there are two ‘natural’ representations to be used in the

search for an assignment of activities to times:

Schedule-based: A direct representation using the assignment times of activities.

Sequence-based: This is based on a selecting a total order on all the activities.

Given such a sequence then a time schedule is constructed by taking the activities

one at a time in the order of the sequence and placing each one at the earliest time

that it will go in the schedule.

The schedule based method is direct, and (perhaps) most natural for a mathemat-

ical programming approach, but we believed it could make a metaheuristic method

difficult, in particular, it becomes more challenging to generate many feasible solu-

tions. Hence, we used the sequence method as it has the advantage of being easier to

produce schedules that are both feasible and for which no activity in such a schedule

can be moved to an earlier time without moving some other activities. Our overall

approach is in two phases in a “construct and improve” fashion. Firstly, a heuristic

constructor is used to create initial sequences. The novelty here is that we generate it

using Monte-Carlo Tree Search (MCTS) methods [1]. Secondly, an improvement phase

is applied using a large variety of heuristic neighbourhood moves. This phase is care-

fully controlled by a combination of methods arising from standard metaheuristics,

memetic algorithms, and also an extension of an existing hyper-heuristic [2].

2 Construction Phase

On inspecting good solutions, we found many cases had an approximate ordering of

the projects: There would be times in the schedule when the general focus would

be on one or few projects and during the schedule this focus would change. This is

natural when the primary objective is the delay-based TPD rather than on the overall

makespan, and it suggested that a good constructor should attempt to create initial

sequences that mimic such project (partial) orderings. The problem then is how to

quickly compare between different project orderings. We use an MCTS method in

which the fast “rollout” is done by means of a randomised schedule constructor. As

standard in MCTS, the aim is not to directly produce good solutions but to use an

unbiased sampling to make good decisions. There is also an option as to whether to

generate total or partial orders between the projects. We settled for a 3-way partition

of the projects taken to correspond to ‘start’, ‘middle’ and ‘end’ of the overall project

time. The MCTS is then used to select the projects constituting each of the partitions.

In the rollout, the order of activities within each project partition is taken as a random

one that respects the precedences.

3 Improvement Phase

The improvement phase uses an extension of [2] together with a large set of moves,

or “Low Level Heuristics”. Some of which are given below; all moves are restricted, as

needed, to only generate sequences that respect all the precedence constraints.

1. SwapJobs: Swap two activities within the sequence.

2. InsertJob: Insert a given activity into a new location in the solution sequence.

3. SetMode: Change the mode of a activity to a new randomly chosen mode.



4. MoveUniform: A set of activities is selected uniformly at random. The move

has three options: moving activities, changing modes or both. When moving the

selected activities they are reshuffled randomly. When changing the modes, random

modes are assigned to the selected activities.

5. MoveLocal: Similar to MoveUniform, with the difference being that the ac-

tivities are selected using a specific distribution that in not uniform but that is

centered around a controllable position, and with a controllable width, within the

sequence.

6. MoveOneProject: Similar to MoveUniform, but the activity selection is biased

towards a randomly selected project.

7. MoveBiasedGlobalResource: Similar to MoveUniform, but favours selection

of activities which have a bigger remaining capacity on the global resources.

8. MoveEndBiased: Similar to MoveBiasedGlobalResource, but favours the ac-

tivities with a position close to the end of their project.

9. FILS swapJobs/insertJobs/setMode: these three moves are First Improvement

Local Search (FILS) procedures based on the swapping, inserting or mode changing

limited neighbourhoods.

10. SwapTwoProjects: Swaps two randomly selected projects in the sequence.

11. MutationOneExtreme: the activities of a randomly selected project are all col-

lected and squeezed into a randomly-selected position in the sequence.

12. MutationOne: Shifts all the activities of a randomly selected project by a fixed

number of positions in the sequence.

13. MoveProjects: Extracts the sequence of the projects in the solution (based on the

positions of the last activities in each project), selects several consequent projects,

and then moves them to either the beginning or end of the sequence.

The moves are controlled by a combination of meta-heuristics and a hyper-heuristic,

all in the context of a multi-threaded population-based approach that uses ideas from

memetic algorithms.

4 Implementation Experiments and Results

As might be expected, the many of our experiments were concerned with selecting the

algorithms and then (partially) tuning the many parameters that are possible within

the overall search control algorithm. It was also important to a careful implementation

so that the construction of the schedule from a sequence was as fast as possible. For

example, it helped to use “prefix sharing” in which the construction from the current

sequence can reuse the results of a previous construction, at least up until the point at

which the two activity sequences differ.

We provide some preliminary experimental results in Table 1. For reference pur-

poses, we include the results from the competition website of the best results of the

qualification phase. We then give our average performance of the submitted code un-

der conditions similar to the competition, and, for purposes of comparison, the best

values that we ever encountered during all our experiments. It can be seen that under

competition conditions, we were generally able to beat (or equal) the results from the

challenge website, but that there is still room for improvement on most of the instances.



Instance Quals best Our Mean Our Best

A-1 1 23 1 23 1 23
A-2 2 41 2 41 2 41
A-3 0 50 0 50 0 50
A-4 65 42 65 42 65 42
A-5 153 105 152 104 150 104
A-6 147 96 136 91 133 91
A-7 596 196 602 202 589 201
A-8 302 155 280 151 272 151
A-9 223 119 203 126 196 125
A-10 969 314 850 308 840 306
B-1 — — 352 128 345 125
B-2 — — 441 169 424 165
B-3 — — 547 211 526 208
B-4 — — 1279 285 1254 277
B-5 — — 831 247 809 251
B-6 — — 936 233 897 224
B-7 — — 796 231 782 229
B-8 — — 3315 534 3088 533
B-9 — — 4197 755 4097 745
B-10 — — 3238 454 3136 445

Table 1 Experimental results summary. The objective values are given as ordered pairs of
“TPD”, total project delay, and “TMS”, total makespan. The ‘Quals best’ values are from
the competition website for all the entrants in the qualification round. ‘Our Mean’ values are
average values for our algorithm under time and machine conditions intended to match those
of the competition. ‘Our Best’ is the best solution encountered over a large number of runs
with a variety of runtimes and parameter settings.

5 Conclusions

Our algorithm consists of a two-phase construct-and-improve method working on the

sequence in which activities are given to a schedule constructor. The construction of an

initial activity sequence is done by a (novel) hybrid of MCTS and partitioning of the

projects. The improvement phase uses a large number of neighbourhood moves, in a

multi-threaded fashion, and controlled by a mix of ideas from metaheuristics, memetic

algorithms, and hyper-heuristics.

References

1. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P., Tavener,
S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree search methods.
Computational Intelligence and AI in Games, IEEE Transactions on 4(1), 1–43 (2012).
DOI 10.1109/TCIAIG.2012.2186810

2. Kheiri, A., Özcan, E., Parkes, A.J.: HySST: Hyper-heuristic search strategies and
timetabling. In: Proceedings of the Ninth International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2012) (2012)


	Introduction
	Construction Phase
	Improvement Phase
	Implementation Experiments and Results
	Conclusions

