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A B S T R A C T

Global warming has focused attention on how the world produces the energy required to power the planet. It
has driven a major need to move away from using fossil fuels for energy production toward cleaner and more
sustainable methods of producing renewable energy. The development of offshore windfarms, which harness
the power of the wind, is seen as a viable approach to creating renewable energy but they can be difficult
to design efficiently. The complexity of their design can benefit significantly from the use of computational
optimisation. The windfarm optimisation problem typically consists of two smaller optimisation problems:
turbine placement and cable routing, which are generally solved separately. This paper aims to utilise selection
hyper-heuristics to optimise both turbine placement and cable routing simultaneously within one optimisation
problem. This paper identifies and confirms the feasibility of using selection hyper-heuristics within windfarm
optimisation to consider both cabling and turbine positioning within the same single optimisation problem.
Key results could not identify a conclusive advantage to combining this into one optimisation problem as
opposed to considering both as two sequential optimisation problems.
1. Introduction

Globally there is a need to move away from fossil fuel and carbon-
producing energy sources toward cleaner and more sustainable meth-
ods of powering the world. This has led to the increased construction
of large-scale offshore windfarms, which utilise the faster wind speeds
found at sea, for greater and cleaner energy production. However,
renewables are typically more expensive than their carbon dioxide
emission generating counterparts, and this can create a barrier to
investment within the industry. Increasing the energy produced whilst
minimising the cost of production is key to reducing entry costs and
attracting further investment into renewable energy. The creation of
windfarms can present significant design challenges to ensure max-
imised production whilst minimising the cost of the farm. The develop-
ment of a windfarm requires the consideration of several sub-problems
and the need for them to be addressed. These include the interference
impact of other turbines, turbine placement taking account of expected
wind speeds, inter-turbine cabling and the connection to an external
grid or substation. Each of these areas are of fundamental importance.
Increased power output or better optimisation of cabling can result in
a significant reduction to potential lifetime costs which, could have the
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ability to make renewable energy more competitive than traditional
fossil fuel sources.

The majority of work to date in the area of offshore windfarm design
has been divided into two steps:

(1) Turbine placements subject to maximisation of power produc-
tion and consideration of other constraints such as interference
between turbines and minimum separation distances.

(2) Once turbine positions are determined, the cabling layout be-
tween turbines is optimised with the goal of minimising costs
and power loss subject to constraints such as cable capacity and
layout constraints.

Development of these two steps has largely been covered using
mixed-integer linear programs with the inclusion of heuristics in some
areas such as a matheuristic [1] and hyper-heuristics [2]. Traditionally,
the reduction in cabling cost is limited by the static positioning of
the wind turbines from step (1). However, combining both steps (1)
and (2) could yield lower cabling costs within the windfarm whilst
also considering other objectives such as maximising power production.
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Cabling can account for around 4%–5% of the total capital expenditure
for a typical windfarm construction [3]; and it can be as high as 18%
for offshore windfarms [4]. Therefore, any potential reduction in this
cost could be significant. This opportunity lends itself toward the use
of a hyper-heuristic approach which would allow for a range of single
low-level heuristics (LLH) to implement adjustments to a windfarm’s
turbine positions and cabling layout.

One of the main aims of this work is to investigate if the turbine
placement and cable routing optimisation problem can be combined
and whether such an approach is more beneficial than solving them
sequentially (turbine placement followed by cable routing). To achieve
this, several optimisation algorithms were developed using selection
hyper-heuristics combined with various solution acceptance criteria
(move acceptance) and applied to both a sequential model and a
simultaneous model. In this paper, these models are referred to as either
sequential (one after the other) or simultaneous (solving both at the
same time).

The paper is structured as follows: Section 2 examines previous
literature and research within the area of windfarm optimisation and
selection hyper-heuristics. Section 3 defines the windfarm problem and
gives a mathematical formulation alongside visual examples. Section 4
presents the methodology used. Section 5 presents the results when
applied to real-world windfarm instances and provides computational
results alongside discussion. Finally, Section 6 concludes against the
overall aims and objectives of this study and provides recommendations
for future work.

2. Related work

The considerable potential to increase output whilst reducing cost
is reflected in the wide body of research addressing the optimisation
of a windfarm’s layout. Much of the research focuses on one aspect
of a windfarm, either a turbine layout or inter-array cable routing;
and very limited attention has been posed on the combination of these
two aspects. Wu et al. [5] and Hou et al. [6] developed metaheuristic
approaches to solve the combined problem. More in particular, Wu
et al. [5] combined a genetic algorithm for the placement of wind
turbines with an – inner – ant colony optimisation routine to assess
the associated ‘‘optimal’’ cabling costs. Hou et al. [6] developed a
particle swarm optimisation approach to solve the combined problem.
Most of the research has considered both key components in sequence
with turbine placement occurring first followed by cable routing [7].
Research differs in terms of the constraints considered (such as sound,
wake or terrain) and objectives desired (cost, profit, power or effi-
ciency). Some additional work has explored areas such as substation
placement [8] and the use of machine learning to train a model for the
faster computational examination of potential siting locations [1].

Mixed-integer linear programming (MILP) is a popular method for
deriving an optimal turbine or cabling layout. Fagerfjäll [8] applied
MILP to optimise an onshore windfarm. Two models were developed,
a production model (for turbine placement) and an infrastructure
model (for cabling) which would be implemented upon the production
model’s result. This linear programme aimed to maximise produc-
tion and revenues from the windfarm. Within the production model,
constraints on the MILP included minimum separation distances and
consideration of the production loss between turbines due to the wake
effect. These models were contrasted to commercial heuristics-based
optimisation software and showed the potential to yield significantly
higher production values (40% or so higher). The infrastructure model
for inter-array cabling introduced Steiner nodes within the spanning
trees, allowing for shorter cable pathways when multiple turbines
were nearby. However, because the two models were not combined,
there is limited scope for providing a true optimal windfarm layout.
Furthermore, only two types of cables were considered within the
inter-array cabling, whereas in real-world scenarios several types exist
and are in use. Similarly, a MILP was implemented by Fischetti and
2

Pisinger [9] to the cabling aspect in order to determine an optimal
cable path between turbines. An initial solution was developed and
applied using a commercial MILP solver and thereafter a matheuristic
scheme was applied iteratively to develop the solution. Fischetti and
Pisinger [9] found that using both these methods combined typically
outperformed the use of a separate heuristic or MILP approach. But,
the performance of the subsequent heuristics depended heavily on the
initial MILP and what might work for larger projects was not always
applicable to smaller windfarms with fewer turbines to place. A more
unique MILP model was proposed by Donovan [10]; this required a
minimum productivity requirement (MPR) for any potential turbine
location. The MPR identified the required power production to justify
investment into a turbine and ensure initial costs were paid back within
the specified required payback period. Including this constraint within
the model ensures that a windfarm can be profitable, however, overall
production may be sacrificed in the pursuit of a minimum cost layout.

Saavedra-Moreno et al. [11] used an evolutionary algorithm to
optimise the positioning of turbines based on factors such as orography,
wind conditions, obstacles and cost of installation. Cazzaro et al. [3]
also adopted a heuristic approach, but, they concentrated upon the
cable routing problem. With a focus on fast heuristics that can scale
well, various metaheuristics were used, including sweep multi-start,
simulated annealing, tabu search, variable neighbourhood search, ant
algorithm and genetic algorithm. These were applied to both test and
training instances with tabu search and variable neighbourhood search
reaching near-optimal values within the test set. Metaheuristics have
also been applied to a floating offshore windfarm by Lerch et al. [12].
They adapted a particle swarm optimisation model to develop the
inter-array cable layout subject to minimisation of the following costs:
acquisition, installation and energy loss costs. Additional constraints
included reliability assessments for electrical components insofar as
floating windfarms have increased complexity with cables undergoing
high mechanical load due to sea conditions. The model successfully
avoided cable crossing and also produced shorter cable distances and
costs compared to the reference model used. Bauer and Lysgaard [13]
noted that the cabling routing decision is the same as a vehicle routing
problem and thus built a heuristic algorithm for cable layouts based
on the Clarke and Wright savings heuristic for vehicle routing. A
planar open savings heuristic was developed which considered merging
two routes into one and at each iteration chose to merge with the
greatest saving subject to capacity constraints. This was compared to a
hop-indexed integer programming formulation and found the heuristic
approach was within 2% of the optimal layout. However, the research
only focused on a maximum of two cable types which, whilst represen-
tative of the real-world sites used within the paper, may have limited
wider application. The reader is directed to Wilson et al. [14] for more
heuristic techniques applied to windfarm layout optimisation problems.

This paper focuses on utilising the latest developments in selection
hyper-heuristics that focus on turbine positioning and cable layouts at
the same time within one optimisation problem as opposed to one after
the other. Cowling et al. [15] defined hyper-heuristics as ‘heuristics
to choose heuristics’ and used a range of selection hyper-heuristics to
schedule a sales summit. Selection hyper-heuristics consist of two key
elements, selection method (SM) and move acceptance (MA) [16]. A
move acceptance defines if a solution is accepted or not and these
methods are either stochastic if there is a probability of accepting, or
otherwise deterministic by nature. An example of a MA is ‘improve
or equal’ whereby if a new solution’s objective value is equal to or
better than the current best, it is accepted and becomes the new
best solution. Selection methods then aim to diversify the range of
solutions searched by choosing the optimal low-level heuristic based
on set criteria or methodology [17]. Li et al. [2] pursued a multi-
objective approach utilising nine selection hyper-heuristics to control a
set of low-level metaheuristics. These metaheuristics consisted of three
multi-objective evolutionary algorithms. A variety of move acceptance
methods were also considered including only-improve, great deluge

and all-acceptance. Findings showed that selection hyper-heuristics
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could exploit the use of multi-objective metaheuristics and provide
statistically significant performance compared to single objective use.
Further work, however, would need to include a greater number of
move acceptance methods and the application to other components of
windfarm design such as inter-array cable routing.

The literature reviewed shows a significant and well-recognised
gap in the optimisation of an optimal windfarm design. Separation
of the main two stages (1) turbine placement and (2) cabling layout
design can result in a missed opportunity to consider the potential
cable costs alongside the turbine costs for a new position. Cabling
between turbines (inter-array) and a substation or external grid can
be a significant cost factor within any offshore windfarm; there may
be benefits to it being considered alongside the placement of wind
turbines as suggested by Cazzaro et al. [3]. The main methodology
used within previous research is in the application of mixed-integer
linear programming and heuristics with only a small amount of work
considering the role of selection hyper-heuristics. This area is the focus
of this paper methodology.

3. Problem description

Offshore windfarm design is a complex and challenging optimisa-
tion problem, with a large number of possible layouts and varying
objectives. Several areas of design need to be addressed including
turbine placement, cable routing and substation placement. This paper
focuses on two areas of the design phase: turbine placement and cable
routing. Previous research shows the process of optimising these two
areas has typically been done sequentially, in the order of turbine
placement and then cable routing second.

• Turbine Placement Optimisation Problem: The placement of
turbines aims to determine a feasible selection of locations from
which the power production of the windfarm is maximised sub-
ject to various constraints. A considerable impact upon potential
production is the wake effect between turbines. As wind flows
through a turbine, the kinetic energy of the wind is disrupted
and results in a slower wind speed, reducing power production
for any turbines downstream. Reduction of the wake effect is
therefore of extreme importance and must be considered within
any optimisation model. In addition to the consideration of the
wake effect, there must exist a minimum separation distance to
avoid turbine blades colliding with each other. Limits upon the
number of turbines to locate should be specified in advance of
any optimisation model.

• Cable Routing Optimisation Problem: Within an offshore wind-
farm, the power produced by each turbine must be transferred
back to a substation located near to the farm; from which a high-
capacity export cable transmits the power to the main electrical
grid. Optimisation of this problem aims to find a feasible power
routing between turbines and the substation. An example of how a
typical offshore windfarm is connected is shown in Fig. 1. Cabling
between turbines is called inter-array cabling and is typically low
voltage cabling with some resistivity. These cables are connected
to the base of each turbine (not the seabed) and then ‘hang’
down before laying on the seabed floor. Turbines can either be
connected to each other or directly connected to the substation.
Once arriving at the substation this power is exported to the
grid. Key requirements of this optimisation problem involve the
correct selection of cable type, minimisation of power losses due
to resistivity in cables and minimisation of the cost of cabling.
Offshore cabling can be an expensive component of a windfarm
accounting for around 4%–5% of the total cost [3]. As power is
transmitted through cabling, a certain amount is lost based upon
the resistance of each cable; this varies dependent on the cable
type with the tendency for more expensive cables to have lower
resistance. Therefore, a trade-off can exist between choosing more
efficient cabling (benefitting in the long-term) and reducing the
cost of those cables.
3

Fig. 1. Example offshore windfarm cable layout, orange arrows indicate the direction
of power flow toward the substation.

Given the complex design challenges and a considerable number
of factors involved in windfarm design, the problem is simplified
within this paper. To reduce the potential turbine positions, a grid
of pre-defined locations is used, also allowing for the minimum sep-
aration distance to be incorporated between each grid point. Further
assumptions are made below:

A1 Only one turbine may occupy any given position with the grid.
A2 Cabling is only in straight lines and between turbine positions or

the substation (in the real world cabling can curve but this adds
a large amount of complexity).

A3 Only one cable may traverse between each pair of turbines.
A4 The substations’ position is already known and cannot move.
A5 Only one type of turbine is being placed with a rating of 9.5 MW.
A6 Without any turbines, the expected production at each spot on

the grid is the same, i.e., wind speed is equal everywhere.
A7 There are no differences in foundation costs and therefore these

are not considered.

These assumptions allow for easier development and evaluation of
optimisation models whilst still considering major conditions such as
wake effect and cabling factors.

The problem can be defined mathematically as follows: A vector, 𝑇
of size 𝑛 where 𝑛 is the number of potential turbine positions represents
whether or not a position on the grid has a turbine occupying it (1 =
occupied, 0 = empty). Four matrices are defined to signify (1) cabling,
(2) distances, (3) power loads, and (4) cabling costs.

(1) Cabling matrix represents the cabling between each subsequent
siting option (𝑐𝑖,𝑗) and substation where: 𝑐 is either 1 if a cable
exists or 0 if no cable exists between position number 𝑖 and 𝑗.
𝑛 represents the number of sites + 1, with the additional site
representing cabling to the substation.

𝐶𝑎𝑏𝑙𝑖𝑛𝑔 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑐1,1 𝑐1,2 ⋯ 𝑐1,𝑛
𝑐2,1 𝑐2,2 ⋯ 𝑐2,𝑛
⋮ ⋮ ⋱ ⋮
𝑐𝑛,1 𝑐𝑛,2 ⋯ 𝑐𝑛,𝑛

⎞

⎟

⎟

⎟

⎟

⎠

An example potential grid of potential turbine locations and
cabling is shown in Fig. 2. Shown is a grid of 16 potential
positions with 5 selected and the substation shown in the bottom
left, alongside the cabling layout with power flow indicated by
the arrow direction. Within this example there is one power flow
route to the substation defined as (9, 15, 8) → (6) → (1) → (sub).
Where the cumulative net power is summed at each flow point
(6), (1) and (sub).

(2) Distance matrix represents the distance between each potential
position (𝑑𝑖,𝑗) with 𝑑 representing the distance between site
number 𝑖 and j. 𝑛 represents the number of sites + 1, with the
additional site representing cabling to the substation.

𝐷𝑖𝑠𝑡 =

⎛

⎜

⎜

⎜

⎜

𝑑1,1 𝑑1,2 ⋯ 𝑑1,𝑛
𝑑2,1 𝑑2,2 ⋯ 𝑑2,𝑛
⋮ ⋮ ⋱ ⋮

⎞

⎟

⎟

⎟

⎟

⎝

𝑑𝑛,1 𝑑𝑛,2 ⋯ 𝑑𝑛,𝑛⎠
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Fig. 2. Example grid showing potential turbine sites and substation position alongside
power flow within the windfarm.

(3) Net Power matrix accounts for the net power sent between each
position (𝑝𝑖,𝑗) with 𝑝 representing the net power transferred from
site number 𝑖 and 𝑗. This is the net power after losses due to
wake and cabling have been considered. 𝑛 represents the number
of sites + 1, with the additional site representing cabling to the
substation. The sum of the 𝑛th column, therefore, shows the total
net power flow into the substation from all turbines.

𝑁𝑃 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑝1,1 𝑝1,2 ⋯ 𝑝1,𝑛
𝑝2,1 𝑝2,2 ⋯ 𝑝2,𝑛
⋮ ⋮ ⋱ ⋮
𝑝𝑛,1 𝑝𝑛,2 ⋯ 𝑝𝑛,𝑛

⎞

⎟

⎟

⎟

⎟

⎠

Net power flow between two points is defined as the initial
power flow minus power losses due to resistivity in the cable.
This varies dependent upon the cable cross-section and material
used such as copper or aluminium. To calculate the power
capacity, in MW for a given cable:

𝑃 = 𝐼 × 𝑉
1000

(1)

where: 𝐼 is the rated cable current in Amps; 𝑉 is the cable
voltage in kV; and 𝑃 is the power capacity, in MW for the cable.
The expected power loss (in MW) for each cable over a set
distance is therefore equal to:

𝑃𝐿𝑖,𝑗 =
𝐼2 × 𝑅 ×𝐷
1 × 109

(2)

where: 𝑅 is the resistance (ohm/km) within the cable; 𝐷 is the
distance travelled in km, from point 𝑖 to 𝑗 is equal to 𝐷𝑖𝑠𝑡𝑖,𝑗 ; and
𝑃𝐿𝑖,𝑗 is the power loss between points 𝑖 and 𝑗.

(4) The cost of cabling is represented below with 𝑐𝑐 indicating
the individual costs from each siting position 𝑖 and 𝑗 (𝑐𝑐𝑖,𝑗 ).
The cabling cost between two points is defined by choosing
an appropriate cable based upon the power load expected and
identifying the cost per unit of distance and multiplying by the
distance travelled.

𝐶𝐶 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑐𝑐1,1 𝑐𝑐1,2 ⋯ 𝑐𝑐1,𝑛
𝑐𝑐2,1 𝑐𝑐2,2 ⋯ 𝑐𝑐2,𝑛
⋮ ⋮ ⋱ ⋮

𝑐𝑐𝑛,1 𝑐𝑐𝑛,2 ⋯ 𝑐𝑐𝑛,𝑛

⎞

⎟

⎟

⎟

⎟

⎠

3.1. Windfarm objective function

The key objectives of windfarm optimisation are to maximise power
production within the farm whilst minimising the overall cost. As
described previously, the power produced within an offshore windfarm
is mainly impacted by the wake effect and power losses through the
cabling layout. Minimisation of cost is highly dependent upon the
number of wind turbines placed, the rated output of these turbines and
4

the positioning and choice of cabling used between turbines and back to
the substation. Saavedra-Moreno et al. [11] utilised similar objectives
within their cabling optimisation by creating a cost function equal
to 𝑐𝑎𝑏𝑙𝑖𝑛𝑔_𝑐𝑜𝑠𝑡𝑠

𝑛𝑒𝑡_𝑝𝑜𝑤𝑒𝑟 . Marmidis et al. [18] optimised purely turbine layouts
and proposed an equation in the same fashion to be 𝑡𝑢𝑟𝑏𝑖𝑛𝑒_𝑐𝑜𝑠𝑡𝑠

𝑛𝑒𝑡_𝑝𝑜𝑤𝑒𝑟 . The

objective function within this paper is therefore a combination of both,
resulting in: 𝑐𝑎𝑏𝑙𝑖𝑛𝑔_𝑐𝑜𝑠𝑡𝑠+𝑡𝑢𝑟𝑏𝑖𝑛𝑒_𝑐𝑜𝑠𝑡𝑠

𝑛𝑒𝑡_𝑝𝑜𝑤𝑒𝑟 . This equation gives a ‘ratio’ of the
cost per unit of net power allowing for easier comparison between
smaller and larger windfarm instances.

Defining this mathematically based upon the introduced matrices
and previous equations gives:

𝑜𝑏𝑗 =
∑

𝑖,𝑗 𝐶𝐶𝑖,𝑗 +
∑𝑛−1

𝑖=1 𝑆𝑖𝑇𝑐
∑

𝑖,𝑛 𝑁𝑃𝑖,𝑛
+ 𝛼 (3)

where: ∑

𝑖,𝑗 𝐶𝐶 𝑖,𝑗 equals total cabling costs; ∑𝑛−1
𝑖=1 𝑆𝑖𝑇𝑐 equals total

turbine costs with 𝑇𝑐 representing the cost per turbine and 𝑛 − 1 is the
total number of grid positions; ∑𝑖,𝑛 𝑁𝑃 𝑖,𝑛 equals total net power with
𝑛 representing the substation matrix column vector; 𝛼 represents the
feasibility of the windfarm and is a dummy variable (1 = feasible, inf =
not feasible), these feasibility requirements are discussed in Section 3.2;
and 𝑜𝑏𝑗 is the objective value to be minimised.

3.2. Constraints

In line with previous research, several commonly used constraints
are defined. Firstly, there must exist a limit on the minimum and the
maximum number of turbines to be placed within the windfarm and
the number of turbines cannot exceed these. Secondly, a cable chosen
to transfer power between two points must be capable of handling the
power flowing through it, this includes all previous power flows. All
turbines placed in the windfarm need to have a cable path directing the
flow of power back to the substation; for each of these turbines, only
one cable transferring power out of each turbine may exist (multiple
inputs into one turbine is allowed). Finally, cabling must not cross over
each other. Although this is possible in the real world it can result in
significant costs and therefore is included as a constraint within the
problem formulation.

C1 A limit range on the number of turbines placed: 𝑡𝑙𝑜𝑤𝑒𝑟_𝑙𝑖𝑚𝑖𝑡 ≤
𝑡𝑐𝑜𝑢𝑛𝑡 ≤ 𝑡𝑢𝑝𝑝𝑒𝑟_𝑙𝑖𝑚𝑖𝑡.

C2 The cable between two points must be able to support the power
load transferred.

C3 All turbines must be connected back to the substation.
C4 Turbines can only have one cable from which power flows out

(no split power outputs).
C5 Cabling cannot cross over.

Any violation of these constraints is considered a non-feasible so-
lution. Examples of feasible and non-feasible layouts are shown in
Fig. 3.

3.3. Problem instances

A variety of data is used within the optimisation problem, grid
site positions, substation position, interference data and cabling data.
Within the grid data, for each possible position, a ‘Northing’ and
‘Easting’ position is given which is used to represent the solution as
the 𝑋 position and 𝑌 position of each possible site. In addition, the
substation’s position is also given in the same way. The interference
data consists of pre-computed wake values within a range of arrays.
This is used to quickly determine the wake effect caused on each
turbine by all the other turbines currently placed. This is then applied
as a factor of reduction to the initially expected power (9.5 MW per
turbine) to compute the ‘expected’ production of each turbine placed.
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Fig. 3. Examples of feasible and non-feasible (cable crossing, split power output, disconnected turbine) layouts, blue points are turbines with arrows indicating cabling power flow
and the yellow point indicates the substation (the power destination).
Table 1
Cabling data.

Cable number Type Material Size [mm2] Cost [e/metre] Current [Amps] Resistance [Ohm/km] Voltage [kV]

1 300AL Aluminium 300 145 450 0.13 66
2 400AL Aluminium 400 160 530 0.1 66
3 630AL Aluminium 630 190 650 0.06 66
4 800AL Aluminium 800 210 700 0.05 66
5 240Cu Copper 240 190 540 0.1 66
6 630Cu Copper 630 335 760 0.04 66
7 800Cu Copper 800 390 810 0.03 66
Table 2
Windfarm problem Instances derived from Borssele 4 located within the Dutch part of the North Sea.
Instance Name Siting positions Size (sq km) Lower turbine limit Upper turbine limit

4 Borssele 300 283 179.599192 20 40
3 Borssele 100 110 23.4259816 10 20
2 Borssele 100 (1) 55 10.41154639 5 10
1 Borssele 100 (2) 55 10.41154639 5 10
Data1 for each cable available within the cabling layout is shown in
Table 1. There are two key types of cabling, ‘Aluminium’ and ‘Copper’
both of which have varying subtypes with different sizes, cost, current
and resistance.

Each turbine is capable of a maximum of 9.5 MW power output
in perfect conditions. As no turbine cost data was provided, an esti-
mate has been made based upon information available, for which the
estimated cost of each turbine is e10,000,000.

For the data highlighted above, two problem instances are given of
varying siting sizes. Both relate to a windfarm named ‘Borssele 4’ and
one of the instances (Borssele 100) is a smaller sample of the larger
windfarm (Borssele 300). Two additional instances have been created
by splitting Borssele 100 in half, allowing for an increased sample to
test algorithms on and verify results. In addition, for each instance,
the lower and upper turbine placement limits have been defined based
upon the size of the windfarm area, with an increase in maximum
turbine placements for a larger area (see Table 2 and Fig. 4).

3.4. Windfarm wake model

For this optimisation study engineering wake models are considered
to estimate the wake losses in the windfarm. Engineering wake models
used in this study are based on 1D or 2D analytic descriptions of wind
turbine wakes and a super-position to calculate the effect of merging
wakes. Steady-state CFD type models could be used instead, but that
reduces the reproducibility of this paper (see Figs. 5 and 6).

The two analytic wake models considered are the hat-shaped Jensen
model described in [19,20] and the Gaussian-shaped model developed
by Bastankhah and Porté-Agel [21] and Niayifar and Porté-Agel [22].

The Jensen model is one of the oldest analytic wake models and is
based on three key assumptions. First it assumes that the far (turbulent)

1 Data have been modified due to confidentiality requirements.
5

wake starts immediately after the rotor disk. Therefore, instead of using
the rotor disk velocity at the start of the wake, it uses the near wake
velocity, 𝑢𝑛𝑤, obtained from 1D momentum theory:
𝑢𝑛𝑤
𝑢∞

=
√

1 − 𝐶𝑇 (4)

Here, 𝐶𝑇 = 𝐶𝑇 (𝑢𝑖𝑛) is the wind turbine’s thrust coefficient, which
is a function of the incoming wind speed. The second key assumption
is that there is only an axial velocity component and that the velocity
deficit is constant across the wake. It is therefore sufficient to consider
only the mass conservation equation:

𝐷2
𝑑𝑢𝑛𝑤 +

(

𝐷2
𝑓𝑤 −𝐷2

𝑑

)

𝑢∞ = 𝐷2
𝑓𝑤𝑢𝑓𝑤 (5)

where 𝐷𝑑 is the rotor disk diameter, 𝐷𝑓𝑤 is the diameter of the wake,
𝑢∞ is the free stream velocity and 𝑢𝑓𝑤 is the velocity in the wake. The
resulting velocity deficit for the Jensen model becomes:

𝑢def
𝑢∞

=
(

1 −
√

1 − 𝐶𝑇

)

(

𝐷𝑑
𝐷𝑓𝑤

)2
(6)

The third key assumption in the Jensen model is that it considers
a linear expansion of the wake diameter, with a uniform velocity
deficit in radial direction (known as the ‘‘top-hat’’ profile). The wake
expansion is given by:
𝐷𝑓𝑤

𝐷𝑑
= 1 + 2𝑘𝑤

𝑥
𝐷𝑑

(7)

where 𝑥 is the downstream distance and the parameter 𝑘𝑤 is the wake
decaying constant, which represents how the wake breaks down due to
turbulence by specifying the growth of the wake width. The value of
the wake decay coefficient is typically chosen based on the site location,
e.g., 0.04 for offshore and 0.075 for onshore. Alternatively, in [23] it
is shown that the wake decay coefficient can be made a function of the
incoming turbulence intensity or surface roughness length.

The assumptions show that the Jensen model is very limited in its
behaviour. Therefore several other analytic wake models have been
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Fig. 4. Windfarm problem instances tested within this paper. Instances 1, 2 and 3 are extracts of the whole windfarm.
Fig. 5. Jensen wake.

Fig. 6. Example of Gaussian wake visualised through its velocity field and wake
diameter (dashed lines) for 𝐶𝑇 = 0.8.

introduced over time. A more recent and fairly popular analytic wake
model is the Gaussian wake model developed by Bastankhah and Porté-
Agel [21]. Other than Jensen’s model the Gaussian model is derived
from the simplified momentum equation:

𝜌𝑢𝑓𝑤
(

𝑢∞ − 𝑢𝑓𝑤
)

d𝐴 = 𝑇 , with 𝑇 = 1𝐶𝑇 𝜌𝐴𝑑𝑢
2
∞ (8)
6

∫𝐴𝑑
2

where 𝑇 is the thrust force of the rotor, 𝐴𝑑 is the rotor swept area and 𝜌
is the air density at hub height. The Gaussian wake model considers an
axisymmetric Gaussian velocity deficit distribution in radial direction.
As observed in wind tunnel tests and numerical simulations, especially
the time-averaged far wake is well represented by the Gaussian shape.
The Gaussian assumption leads to a self-similar solution for the far
wake velocity in (8). As a result, the expression for normalised velocity
deficit can be given in closed form:

𝑢def
𝑢∞

=
⎛

⎜

⎜

⎝

1 −

√

1 −
𝐶𝑇
2

(

𝐷𝑑
2𝜎

)2⎞
⎟

⎟

⎠

exp
(

−1
2

( 𝑟
𝜎

)2
)

(9)

where the first term between brackets represents the maximum nor-
malised velocity deficit in the wake at each downwind location, where
𝑟 is the radial distance from the wake’s centre, and 𝜎 is the standard
deviation of the Gaussian-like velocity deficit profiles at each axial
distance 𝑥.

Similar to the Jensen model, also the Gaussian wake model by
Bastankhah & Porté-Agel assumes a linear expansion of the wake:
𝜎
𝐷𝑑

= 𝑘∗ 𝑥
𝐷𝑑

+ 𝜀 (10)

where 𝑘∗ is the wake growth rate (𝜕𝜎∕𝜕𝑥) (not directly comparable with
𝑘𝑤 (∝ 𝜕𝐷𝑓𝑤∕𝜕𝑥) of the Jensen model) and 𝜀 is equivalent to the value of
𝜎∕𝐷𝑑 as 𝑥 approaches zero. Following Niayifar and Porté-Agel [22], the
Gaussian model is closed by selecting the parameter 𝜀 based on mass
conservation and the parameter 𝑘∗ based on Large Eddy Simulations.
The wake growth rate 𝑘∗ is chosen to be a function of the incoming
turbulence intensity, which for waked wind turbines deviate from the
free-stream turbulence intensity. For this the same added turbulence
intensity model by Crespo & Hernandez is used as was used in [22].
Merging wakes are modelled using a super-position model. There are a
range of super-position models, all with their pro’s and con’s, and none
fully representative for all cases, as shown in [24]. In this study we limit
ourselves to the sum-of-squares approach, which is most commonly
used in commercial codes:
(

𝑢∞ − �̄�𝑗
)2 =

∑
(

𝑢∞ − �̄�𝑗,𝑖
)2 (11)
∀𝑖<𝑗
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Fig. 7. Visualisation of low-level heuristics and the impact upon a section of a windfarm’s layout.
Here, for each individual wake inside the windfarm, the kinetic energy
deficit of multiple wakes is assumed to be equal to the sum of the
energy deficits from the relevant upwind turbines.

4. Methodology

The primary aim of this paper is to investigate the application of
combining optimisation of turbine positions and cable routing simulta-
neously whilst also determining if a simultaneous or sequential design
of a windfarm is more optimal. To do this, selection hyper-heuristics
are implemented across a range of selection methods (SM) and move
acceptance criteria (MA). The selection hyper-heuristics control a group
of pre-defined low-level heuristics (LLH) with the aim to minimise
the objective function defined in Section 3.1 subject to the constraints
within Section 3.2.

To evaluate if the simultaneous method of optimisation differs
or outperforms the current widespread use of the sequential model,
two models were developed and tested on each instance. The first
model followed the sequential process and the second implemented the
combined optimisation approach. The results from all instances, and
combinations of MA and SM for both models, were then compared.
These two models are referred to as ‘sequential’ and ‘simultaneous’. The
sequential model was developed using basic metaheuristics and some
of the defined low-level heuristics, the reason past literature was not
used was because of the considerable complexity found in replicating
methods used. Therefore, the aim of this model was to provide some
quantitative ability to compare.
7

4.1. Low-level heuristics

The selection hyper-heuristic is responsible for selecting which low-
level heuristic to implement based upon its own set of criteria. Ten
low-level heuristics were created which aim to allow for a wide range of
moves and solutions. These are defined below and visualised in Fig. 7.

• LLH1 Move a turbine within a set range and keep its current
cabling path.

• LLH2 Place a new turbine and connect it to the nearest turbine
and remove one elsewhere and migrate its cabling.

• LLH3 Remove one turbine and migrate its cabling.
• LLH4 Place a new turbine and connect it to the nearest turbine.
• LLH5 Connect an endpoint to the nearest endpoint.
• LLH6 Connect an endpoint to the nearest point (any).
• LLH7 Swap two end cables around.
• LLH8 Connect a point (any) to another point (any).
• LLH9 Identify a branch of turbines and connect one of the tur-

bines direct to the substation instead.
• LLH10 Identify a branch of turbines and swap the final cable (to

the substation) to the closest point in the branch.

Within the described low-level heuristics, the first four (LLH1–
LLH4), are primarily focused on the movement and changes to the
turbine positions selected and excluded from the sequential model.
Whilst the remaining six (LLH5–LLH10) purely re-arranged the current
cable routing to find a more optimal layout. All heuristics are available
to the simultaneous model.



Renewable Energy 208 (2023) 1–16T. Butterwick et al.
Fig. 8. Initialisation of turbine placement heuristics, orange indicates a change in the solution.
4.2. Initialisation methods

An initial windfarm was constructed so that it met all constraints
laid out in Section 3.2. The construction process used the sequential
stages widely used in previous literature. This process differed for each
of the two model types explained below.

4.2.1. Sequential model initialisation
An initial model was constructed in two phases, firstly turbines were

placed using a local search algorithm with three simple heuristics. One
changes a chosen site for another, the second removes a turbine and
the third adds another turbine. These are visualised in Fig. 8, showing
an initial selection of six random turbine placements and how the three
heuristics impacted them.

The limit on the number of turbines placed is subject to the turbine
count limits. This heuristic algorithm was initialised by a random
number of arbitrary turbines being chosen. The number of 𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑝𝑠
the algorithm is run for is equal to the number of potential turbine
positions multiplied by one hundred (see Algorithm 1 for detail).

Algorithm 1: Sequential model initialisation algorithm (tur-
bines)

1 Let 𝑆𝑖𝑡𝑒_𝐿𝑖𝑠𝑡[𝑆1, 𝑆2, ..., 𝑆𝑁 ] be the list of available sites;
2 Let 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 be an interference matrix;
3 Let 𝑃𝑜𝑤𝑒𝑟 be a power matrix;
4 Let 𝑇𝑈𝑝𝑝𝑒𝑟, 𝑇𝐿𝑜𝑤𝑒𝑟 be the upper and lower cap on turbines

placed;
5 Let 𝑆 be the initial randomly selected sites between

𝑇𝐿𝑜𝑤𝑒𝑟, 𝑇𝑈𝑝𝑝𝑒𝑟;
6 Let 𝐻 = [ℎ1, ℎ2, ℎ3] be the list of heuristics;
7 𝑆𝐵𝑒𝑠𝑡 ← 𝑆;
8 𝑜𝑏𝑗𝐵𝑒𝑠𝑡 ← Obj(𝑆𝐵𝑒𝑠𝑡); /* Obj returns the total power

minus total interference */
9 for 𝑖 ← 0 to 𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑝𝑠 do
10 ℎ ← Random(𝐻);
11 𝑆 ← Apply(ℎ, 𝑆𝐵𝑒𝑠𝑡);
12 𝑜𝑏𝑗 ← Obj(𝑆);
13 if 𝑜𝑏𝑗 > 𝑜𝑏𝑗𝐵𝑒𝑠𝑡 then
14 𝑜𝑏𝑗𝐵𝑒𝑠𝑡 ← 𝑜𝑏𝑗;
15 𝑆𝐵𝑒𝑠𝑡 ← 𝑆;
16 end
17 end
18 return 𝑆𝐵𝑒𝑠𝑡

After the turbine positions were optimised, a simple feasible cabling
structure was placed. All turbines were directly connected to the sub-
station and no-inter array cabling occurred. For each cable, the correct
type is selected based upon the expected power load.

4.2.2. Simultaneous model
Within the simultaneous model, two types of turbine initialisation

were examined (cabling remains the same as in Section 4.2.1):

1. Optimised turbine placement as detailed in Section 4.2.1, with
cabling direct to the substation.
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2. Randomised initial turbine placement with cabling direct to the
substation.

The aim of testing both of these initialisations was to determine if a
randomised model, with potentially more freedom to optimise turbine
placement, could develop a better solution or if a strong initial turbine
placement benefits the selection hyper-heuristics later. The randomised
turbine placement chose several turbines to place randomly, between
the lower turbine limit and upper turbine limit. Once done, a simple
random selection of turbine positions was conducted until the chosen
number was placed.

4.3. Selection method

As mentioned previously, this paper focused on utilising and com-
paring a range of heuristic selection methods to determine the most
applicable to the windfarm optimisation problem. These were as fol-
lows; simple random (SR), sequence-based selection (SS) and a range of
selection heuristics labelled ‘best choice’ (BC). Simple random chooses
an LLH based on pure randomness. Sequence-based selection is inspired
by Kheiri [16], which identifies the next LLH based upon a probability
matrix choosing the next LLH with the highest chance of improvement
given the previous LLH used; this process is defined within Algorithm
2.

Four further selection methods named ‘best choice’ (BC1, BC2, BC3
and BC4) were developed to investigate different criteria for choosing
an LLH. BC1 and BC2 used real-time information from all previous
repetitions run to choose the LLH with the largest improvement rate
and average improvement amount respectively. The improvement rate
is defined as the number of times an LLH choice resulted in a better
solution (less than the previous best) divided by the number of times
that LLH has occurred in the run. For example, if LLH1 has occurred 50
times within the run and resulted in four better solutions, the improve-
ment rate is 4/50 = 0.08 or an 8% rate of finding an improvement on
average. The average improvement amount follows the same method-
ology but is the sum of the total improvement amounts found by the
respective LLH, divided by the number of times the LLH has occurred
in the run. The two remaining selection heuristics, BC3 and BC4 utilise
both average improvement rate and average improvement amount, but
only kept the information for the most recent five iterations of each
respective LLH. These methods aim to test if keeping more recent
information provided a better selection of LLH and an overall better
solution.

4.4. Move acceptance criteria

To evaluate the impact of each selection heuristic, each was tested
using different move acceptance criteria. The move acceptance (MA)
defines if a new solution is accepted as compared to the current best
solution. Two categories of MA were used; deterministic (only improve,
improve or equal and the great deluge) and stochastic (simulated
annealing).

Only improve (OI) accepts solutions that are better (reduction in
the objective value), improve or equal (IE) will accept solutions that are
better or equal to the current best. The great deluge algorithm was first
proposed by Dueck [25] and imposes a ‘tolerance value’ (water level)
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Fig. 9. Overall solution process flowchart.
Algorithm 2: Sequence-based selection algorithm

1 Let 𝐿𝐿𝐻 be a list of possible low-level heuristics;
2 Let 𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙 be the initialised solution;
3 Let 𝑜𝑏𝑗𝐼𝑛𝑖𝑡𝑖𝑎𝑙 be the initialised solution’s objective value;
4 Let 𝑃𝑟𝑜𝑏𝑀 be the probability matrix initialised with 1’s;
5 Let 𝑅𝑒𝑝𝑀 be the repetition matrix initialised with 1’s;
6 Let 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑀 be the improvement matrix initialised with 1’s;
7 Let ℎ, ℎ𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 be the current LLH and previous LLH;
8 𝑆𝐵𝑒𝑠𝑡 ← 𝑆𝐼𝑛𝑖𝑡𝑖𝑎𝑙;
9 𝑜𝑏𝑗𝐵𝑒𝑠𝑡 ← 𝑜𝑏𝑗𝐼𝑛𝑖𝑡𝑖𝑎𝑙;
10 for 𝑖 ← 0 to 𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑝𝑠 do
11 if (ℎ𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 = 𝑛𝑢𝑙𝑙) & (𝑖 ≠ 0) then
12 ℎ𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ← ℎ;
13 ℎ ← Random(𝐿𝐿𝐻);
14 end
15 else if ℎ𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 = 𝑛𝑢𝑙𝑙 then
16 ℎ ← Random(𝐿𝐿𝐻);
17 end
18 else
19 ℎ = 𝑃𝑟𝑜𝑏𝑀 [ℎ𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠].max(); /* Return ℎ with the

highest probability of improve */
20 end
21 𝑆 ← Apply(ℎ, 𝑆𝐵𝑒𝑠𝑡);
22 𝑜𝑏𝑗 ← Obj(𝑆);
23 if 𝑜𝑏𝑗 < 𝑜𝑏𝑗𝐵𝑒𝑠𝑡 then
24 𝑜𝑏𝑗𝐵𝑒𝑠𝑡 ← 𝑜𝑏𝑗;
25 𝑆𝐵𝑒𝑠𝑡 ← 𝑆;
26 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑀 [ℎ𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, ℎ] ← 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑀 [ℎ𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, ℎ] + 1;
27 end
28 𝑅𝑒𝑝𝑀 [ℎ𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, ℎ] ← 𝑅𝑒𝑝𝑀 [ℎ𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, ℎ] + 1;
29 𝑃𝑟𝑜𝑏𝑀 ← 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑀∕𝑅𝑒𝑝𝑀 ;
30 end
31 return 𝑆𝐵𝑒𝑠𝑡
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for which a solution may still be accepted if below. All improvements
are accepted but some non-improvements may still be accepted if below
the tolerance value. This changes over time based upon the initial
solution value and expected end solution value, this tolerance level is
determined as follows:

𝐺𝐷𝑡,𝑟𝑒𝑝 = 𝑆𝑒𝑛𝑑 + (𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑆𝑒𝑛𝑑 ) × (1 −
𝑟𝑒𝑝

𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑝𝑠 ) (12)

where: 𝐺𝐷𝑡,𝑟𝑒𝑝 is the current tolerance (water level) at a specific 𝑟𝑒𝑝;
𝑆𝑒𝑛𝑑 is the expected best possible final solution; 𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial
solution value after the initialisation method; and 𝑟𝑒𝑝, 𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑝𝑠 is the
current rep and the total number of reps the algorithm is run for. For
this study, an end value equal to 75% of the initial solution was used.

Simulated annealing (SA) was also implemented as the final move
acceptance method. SA utilises a ‘temperature’ to try to move away
from local optimums and to find the global optimum value. All im-
provements are accepted in the same manner as the great deluge, but
the acceptance of non-improvements is now a stochastic process as
opposed to deterministic. The method of acceptance is determined by
a probability at a given repetition compared to a random number,
whereby if the random float is less than the probability, a solution is
accepted. The probability of acceptance can be found by:

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑒−
𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑡 (13)

where: 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is equal to the 𝑜𝑏𝑗𝐵𝑒𝑠𝑡 minus the 𝑜𝑏𝑗𝐶𝑢𝑟𝑟𝑒𝑛𝑡; 𝑡 is the
temperature, calculated as the maximum of {min(1, 1 − 𝑟𝑒𝑝

𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑝𝑠 ), 0.01};
and 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is the chance of accepting a given solution.

4.5. Overall algorithm

The methodology for developing a final windfarm design is shown
within the flow chart in Fig. 9. An initial solution was generated based
upon the methods introduced in Section 4.2; from this, dependent upon
the chosen selection hyper-heuristic, a low-level heuristic is chosen and
applied to the initial solution. This was then evaluated for feasibility,
and if feasible, it is accepted if it improves upon the initial objective
value (reduction in value). If not, then the move acceptance criteria
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Fig. 10. Box plot from 10 repeats for selection method Best Choice 3 ‘BC3’ for Model 1, Instance 1 and 2, combined with all four move acceptance criteria.
determine whether it is still accepted. The accepted solution then
becomes the current solution and the process restarts. If not feasible,
the new solution is discarded. This process repeats until the termination
criteria (set number of iterations) is met.

In the sequential model, and from the initialised solution detailed
in Section 4.2.1, the secondary stage, cable routing, is optimised. For
this stage, the solution is iteratively developed following the process in
Fig. 9. However, the pool of available low-level heuristics is restricted
to just those that impact cabling, with no changes or movements of
the current turbine positions. In contrast to the sequential model,
the simultaneous models had access to the entire group of low-level
heuristics that control both turbine and cable placements.

5. Experimental results

5.1. Expectations and hypothesis

The main investigative aim of this work is to evaluate if simultane-
ous optimisation of turbine placement and cable routing can provide
any benefit over a sequential optimisation. This is on top of the objec-
tive to identify the best selection hyper-heuristic and move acceptance
criteria for both of these optimisation types. To achieve these aims,
a statistical evaluation was undertaken for the different models: se-
quential (M1), simultaneous (M2), and a variant of M2, referred to as
simultaneous with an optimised start (M3). For these three models, the
determination of the ‘best’ algorithm was as follows: For each of the
first three problem instances (samples of Instance 4) run all combina-
tions of selection hyper-heuristics and move acceptance criteria for a
set number of repeats to ensure reliable results. The non-parametric
Mann–Whitney U test was conducted between each pair of SM and
MA at the 5% significance level. Where an algorithm is considered
to have statistically significantly outperformed another if the average
value of its repeats is less than another and the 𝑝-value from the non-
parametric test is less than or equal to 5%. The algorithm with the best
performance (statistically better than the greatest number of others)
from each instance was then selected. From these algorithms, the best
overall performer(s) were determined. Once the ‘best’ algorithm(s)
from each model had been chosen, this was then applied to Instance
4 (the entire windfarm) for a longer number of iterations to allow for
comparison between each model type.

The hypotheses set for this study are as follows:

• 𝐻0 (Null Hypothesis): Sequential optimisation outperforms any
method of simultaneous optimisation.

• 𝐻1 (Alternate Hypothesis): Simultaneous optimisation outper-
forms traditional sequential methods.
10
5.2. Experiment setup

Each model (M1, M2 and M3) was applied to each of the smaller
problem instances (1, 2 and 3, Fig. 4). This was run for every combi-
nation of selection method and move acceptance criteria. Each com-
bination was run for ten repeats of 1000 iterations each time and
the average, standard deviation and minimum values were measured
over those repeats. Experiments were carried out on a computer with
specifications: Intel Core i7 7700HQ (3.5 GHz) and 16 GB of 2400
MHz DDR4 memory. Each algorithm was compared against all other
algorithms using the Mann–Whitney U test with a 5% significance level.
This allowed for comparison to determine if, over the ten repeats,
an algorithm is statistically different to another. Further identifying
comparisons were made between each algorithm. Given algorithm A
and algorithm B:

• A is statistically better than B (>)
• A is statistically worse than B (<)
• A is better than B but with no statistical significance (≥)
• A is worse than B but with no statistical significance (≤)

5.3. Model 1 (Sequential optimisation)

Table 3 shows the results from Model 1 concerning the objective
function previously defined (Eq. (3)). Across Instance 1 and 2, selection
method ‘BC3’ statistically outperformed all other algorithms when us-
ing GD or OI move acceptance criteria in Instance 1 and 2 respectively.
The global minimum for Instances 1 and 2 also occurred when pairing
BC3 with IE (Fig. 10). Within Instance 3, however, the best algorithm
was using SR and SA, outperforming 18 of the other 23 selection hyper-
heuristic combinations (Fig. 11). The min value found by SR:SA was
also within 0.17% of the global minimum for Instance 3. This indicates
that a wide equal usage, that a random selection brings, was most
optimal in this instance size.

An interesting observation is an overall reduction in average ob-
jective value across all algorithms in Instance 3, a larger windfarm,
in comparison to the smaller windfarm Instances 1 and 2. It indicates
there could be a non-linear relationship (within Model 1) for the larger
the windfarm the lower the ratio of cost to net power produced,
potentially due to increased numbers of turbines allowing a wider range
of cabling configurations.

Based upon the findings within Instances 1 and 2, selection method
BC3 combined with move acceptance IE performs best. Due to the
considerable difference in findings in Instance 3 compared to 1 and 2,
a second algorithm SR combined with SA was also carried forward for
application to Instance 4, the whole windfarm.
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Table 3
Model 1 results for each selection hyper-heuristic and paired move acceptance criteria for Instances 1, 2 and 3. The best values for each Instance are shown in bold.

SM MA Instance 1 Instance 2 Instance 3

avg std Min > < ≥ ≤ avg std min > < ≥ ≤ avg std min > < ≥ ≤

SR

OI 1 157 147 3435.644 1 152 042 3 0 19 1 1 160 548 2292.023 1 158 691 3 0 15 5 815 326.1 156 124.0 603 783.8 2 1 7 13
IE 1 159 916 2651.326 1 154 904 1 6 7 9 1 160 951 2389.867 1 158 313 3 1 12 7 762 951.7 143 597.3 607 194.2 2 1 15 5
GD 1 157 458 2561.657 1 154 449 4 0 16 3 1 161 135 3091.992 1 157 495 3 0 11 9 870 546.6 72 814.70 711 890.4 2 14 4 3
SA 1 157 542 3151.316 1 153 103 6 0 13 4 1 162 967 5556.139 1 156 527 3 1 1 18 590977.1 49 517.92 533 245.9 18 0 5 0

SS

OI 1 158 544 3769.635 1 153 103 2 0 12 9 1 160 181 3416.056 1 155 676 5 0 14 4 793 038.6 189 527.1 601 217.3 2 0 12 9
IE 1 159 554 4729.139 1 153 103 1 0 9 13 1 159 360 2388.801 1 155 798 6 0 16 1 825 359.7 188 734.5 604 932.3 4 1 4 14
GD 1 161 512 4092.74 1 156 020 0 5 4 14 1 162 240 4157.963 1 157 709 3 0 5 15 879 447.9 137 595.5 600 704.9 0 3 4 16
SA 1 167 063 12 121.62 1 153 103 0 3 1 19 1 162 897 4632.429 1 156 527 3 1 2 17 785 002.0 108 259.8 651 941.5 1 1 14 7

BC1

OI 1 158 584 4744.257 1 153 709 1 0 12 10 1 161 465 3168.095 1 158 313 3 1 9 10 763 610.1 135 881.5 532339.0 0 1 16 6
IE 1 158 425 3403.101 1 153 103 1 0 14 8 1 161 769 3072.114 1 156 285 3 3 8 9 905 482.6 157 230.9 738 700.5 0 2 2 19
GD 1 160 883 5530.535 1 153 709 0 1 5 17 1 163 123 3449.683 1 158 798 2 4 1 16 936 621.2 123 938.1 740 841.1 0 1 0 22
SA 1 166 247 11 844.42 1 151 930 0 5 2 16 1 170 823 7599.826 1 158 717 0 21 2 0 743 543.3 92 197.74 602 547.2 3 1 18 1

BC2

OI 1 158 369 3008.349 1 153 709 1 0 15 7 1 159 677 2182.172 1 156 409 4 0 17 2 803 874.8 96 826.41 655 699.1 1 2 10 10
IE 1 159 015 4012.57 1 153 313 1 0 10 12 1 160 581 2327.675 1 157 424 3 0 14 6 877 056.0 137 987.0 698 241.9 1 2 4 16
GD 1 159 832 4465.864 1 154 638 1 0 8 14 1 162 846 3731.015 1 158 891 3 2 3 15 851 624.2 72 878.81 707 626.3 0 7 7 9
SA 1 160 552 4247.512 1 154 904 1 2 5 15 1 162 452 4575.043 1 156 746 3 1 4 15 757 084.3 128 152.8 533 137.1 3 1 16 3

BC3

OI 1 158 975 5301.762 1 153 103 1 0 11 11 1158792 1321.925 1 157 030 13 0 10 0 716 934.9 97 845.25 602 067.7 3 1 19 0
IE 1156219 4230.309 1151403 7 0 16 0 1 159 914 3245.064 1154637 3 0 17 3 758 643.5 162 779.5 602 261.1 4 1 14 4
GD 1 157 887 4205.866 1 153 103 8 0 10 5 1 162 142 3673.511 1 157 100 2 0 7 14 898 410.2 114 366.0 695 809.9 1 13 2 7
SA 1 160 442 4733.583 1 153 631 1 1 6 15 1 161 893 3647.636 1 157 583 3 1 7 12 755 134.9 128 507.1 532 637.5 2 1 18 2

BC4

OI 1 157 320 3062.818 1 153 103 6 0 15 2 1 161 219 3302.393 1 156 512 3 1 10 9 800 513.7 173 565.0 532 406.1 1 0 11 11
IE 1 158 023 3043.352 1 153 103 3 0 14 6 1 160 885 3761.918 1 156 150 3 0 13 7 813 684.7 198 370.5 605 212.4 4 2 6 11
GD 1 165 630 10 218.37 1 154 980 0 8 3 12 1 174 926 8181.377 1 159 795 0 21 0 2 922 768.1 164 492.4 606 769.9 0 0 1 22
SA 1 167 981 9698.329 1 157 697 0 18 0 5 1 171 211 10 425.87 1 159 795 0 19 1 3 798 107.2 150 884.8 701 442.0 3 1 10 9
Fig. 11. Box plot for 10 repeats using selection method Best Choice 3 ‘BC3’ (left) and Simple Random ‘SR’ (right) for Model 1, Instance 3, combined with all four move acceptance
criteria.
5.4. Model 2 (Simultaneous optimisation with random turbine start)

Table 4 presents the results from a simultaneous optimisation; util-
ising all low-level heuristics to move both turbines and cabling at the
same time with a randomised initial turbine layout. Results from the
Mann–Whitney U pairwise comparison showed that across Instances 1
and 2, the SR selection method performed the overall best, with other
notable results showing IE to contain both the global minimums for
each Instance (1 and 2) (see Fig. 12). However, in the larger Instance
3, BC1 paired with OI performed the best in terms of average run value,
minimum value and statistical outperformance of other algorithms. Part
of this trend can also be found within Instances 1 and 2 where both the
minimum values occurred within BC1 paired with IE (see Fig. 13). The
pairing of BC1 and IE within Instances 1 and 2 also outperformed 13
other algorithms in each case compared to the best which outperformed
15. Based upon these findings, two methods were tested on Instance 4;
SR:IE and BC1:OI.

5.5. Model 3 (Simultaneous optimisation with optimised turbine start)

Table 5 summarises the results from Model 3, which initially gener-
ated an optimised turbine layout and then applied a variety of selection
11
Fig. 12. Model 2 boxplot for selection method Simple Random for Instance 1, 2 and
3.
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Table 4
Model 2 results for each selection hyper-heuristic and paired move acceptance criteria for Instances 1, 2 and 3. The best values for each Instance are shown in bold.

SM MA Instance 1 Instance 2 Instance 3

avg std Min > < ≥ ≤ avg std min > < ≥ ≤ avg std min > < ≥ ≤

SR

OI 1137094 5274.647 1 129 519 15 0 8 0 1 143 353 8455.036 1 136 165 11 0 6 6 1 144 694 3325.897 1 138 260 10 2 3 8
IE 1 141 645 9105.192 1 130 164 12 0 8 3 1 137 104 4398.609 1 130 079 15 0 7 1 1 141 192 4491.485 1 135 720 13 0 5 5
GD 1 161 871 5639.469 1 152 959 4 16 3 0 1 160 424 5638.503 1 152 926 2 15 5 1 1 159 380 7099.724 1 149 392 6 12 3 2
SA 1 168 715 5586.059 1 159 107 2 17 3 1 1 165 146 5072.792 1 159 315 2 15 3 3 1 206 341 9509.750 1 191 948 0 22 1 0

SS

OI 1 142 912 7559.313 1 131 587 12 0 6 5 1 144 747 8129.454 1 134 522 11 1 4 7 1 144 203 6154.868 1 134 415 11 0 3 9
IE 1 143 867 5936.956 1 136 765 12 0 3 8 1 145 177 5482.428 1 138 321 12 1 1 9 1 143 058 6870.426 1 134 786 11 0 5 7
GD 1 151 677 5397.095 1 144 468 8 10 3 2 1 157 299 7514.475 1 146 985 3 11 5 4 1 162 679 10 030.10 1 150 983 6 12 1 4
SA 1 181 271 21 014.83 1 150 557 0 16 2 5 1 173 381 14 432.26 1 158 058 1 17 1 4 1 211 797 14 068.94 1 186 287 0 22 0 1

BC1

OI 1 145 003 7011.122 1 132 672 11 1 2 9 1 140 280 7135.619 1 130 740 12 0 6 5 1137577 7927.860 1124750 14 0 9 0
IE 1 140 058 9694.889 1125464 13 0 9 1 1 137 857 8644.342 1126603 13 0 8 2 1 141 053 12 165.15 1 127 858 12 0 7 4
GD 1 152 460 6522.597 1 137 643 8 10 1 4 1 154 233 4186.612 1 146 746 7 11 3 2 1 152 781 11 452.58 1 136 162 6 10 5 2
SA 1 171 466 19 586.23 1 150 801 0 16 4 3 1 167 752 27 105.47 1 132 153 1 10 2 10 1 168 052 29 983.09 1 131 951 2 8 4 9

BC2

OI 1 143 662 8224.775 1 132 851 12 0 4 7 1136018 8909.451 1 127 806 14 0 9 0 1 147 679 3935.976 1 143 337 10 5 2 6
IE 1 141 415 6144.944 1 132 928 14 0 7 2 1 143 802 8802.568 1 131 050 11 0 5 7 1 139 571 6744.264 1 130 350 13 0 8 2
GD 1 151 720 4564.318 1 146 413 8 11 2 2 1 152 490 7075.229 1 139 223 7 8 4 4 1 155 754 8808.224 1 136 107 6 12 4 1
SA 1 166 219 9417.751 1 153 151 2 16 4 1 1 160 877 4306.847 1 153 496 3 15 3 2 1 186 419 17 215.57 1 153 099 2 17 1 3

BC3

OI 1 144 991 6460.86 1 131 628 11 2 3 7 1 149 363 10 055.42 1 132 140 7 4 5 7 1 142 236 6438.867 1 134 518 12 0 5 6
IE 1 142 337 8726.38 1 131 226 12 0 7 4 1 139 752 5664.844 1 130 242 12 0 7 4 1 143 222 6181.775 1 130 522 12 0 3 8
GD 1 152 847 3835.706 1 147 853 8 11 0 4 1 154 606 6991.417 1 140 784 7 11 2 3 1 162 030 6482.014 1 148 101 6 12 2 3
SA 1 175 828 11 708.25 1 159 401 2 17 1 3 1 166 911 13 311.68 1 152 442 2 15 2 4 1 183 856 13 860.28 1 158 541 2 17 2 2

BC4

OI 1 147 269 9258.166 1 130 099 8 3 4 8 1 144 921 7604.365 1 135 387 11 1 3 8 1 140 355 6641.533 1 129 398 13 0 7 3
IE 1 143 253 7422.153 1 134 978 12 0 5 6 1 138 915 6106.091 1 129 794 13 0 7 3 1 139 536 4391.514 1 134 853 14 0 8 1
GD 1 191 835 11 563.21 1 172 261 0 20 0 3 1 203 561 16 167.52 1 179 092 0 23 0 0 1 190 437 7625.244 1 179 310 2 17 0 4
SA 1 188 838 14 278.06 1 168 044 0 20 1 2 1 186 272 25 425.27 1 155 092 1 20 0 2 1 183 847 10 661.10 1 168 580 2 17 3 1
Fig. 13. Model 2 boxplot for selection method Best Choice 1 for Instance 1, 2 and 3.

methods and move acceptance criteria to both turbine positions and
the cabling layout. From the statistical pair-wise tests, there is no
clear overall best algorithm. Instances 1 and 3 show the strongest
performance from selection method BC2 paired with move acceptance
GD and SA respectively (see Fig. 14). However, the best minimum
run values from these two Instances, appear when using the SS selec-
tion method. Contrasting this, Instance 2 showed more consistency in
run results with the best average, minimum and overall performance
present within BC4, where move acceptance OI is the best performer.
It was not clear from Instance 1 and 3 which combination is most
successful so BC2 paired with both GD and SA was included within
the algorithms tested upon Instance 4 (entire windfarm). Therefore,
BC4:OI, BC2:GD and BC2:SA were tested further on Instance 4.

5.6. Further experiments

Table 6 summarises the results employing the best algorithms found
from each of the three model types. These are applied for a longer
length of iterations to the complete windfarm instance described as
12
Fig. 14. Model 3 boxplot for selection method Best Choice 2 for Instance 1 and 3.

Instance 4 to identify and allow for a comparison of the overall perfor-
mance between model types. Both deterministic and stochastic methods
are included with all move acceptance criteria appearing. Selection
Sequence (SS) is the only selection method not carried forward, this
may be due to the difficulty in identifying appropriate sequences with
the high randomness present and a great number of potential cabling
layouts.

The table shows that in the long-run results for the two best-
performing algorithms within Model 1, both methods can improve upon
the initially generated solution, improving both cable costs and overall
net power. Selection method ‘BC3’ combined with IE performed slightly
better overall compared to SR:SA and was able to reduce cabling costs
by a further 7,000,000 euros. Fig. 15 demonstrates the difference of
using simulated annealing against improve or equal, with simulated
annealing identifying significantly more local optimums, but this still
underperformed compared to the combination of BC3 and IE. The usage
of each low-level heuristic is shown in Fig. 16, there are only slight
differences between utilisation rates, suggesting that within Model 1, a
wide even selection of LLH is most effective.

In Model 2, Table 6 indicates that selection method SR paired with
move acceptance IE outperformed the pairing of BC1:OI by an objective
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Table 5
Model 3 results for each selection hyper-heuristic and paired move acceptance criteria for Instances 1, 2 and 3. The best values for each Instance are shown in bold.

SM MA Instance 1 Instance 2 Instance 3

avg std Min > < ≥ ≤ avg std min > < ≥ ≤ avg std min > < ≥ ≤

SR

OI 1 020 144 270 539.8 505 491.9 1 1 8 13 1 159 360 5237.905 1 152 037 10 0 4 9 943 104.7 163 697.6 718 231.9 0 0 20 3
IE 1 018 611 270 823.3 504 351.1 4 3 7 9 1 159 251 4849.177 1 153 846 9 0 6 8 1 052 326 156 560.3 850 908.6 0 5 5 13
GD 963 904.5 299 130 522 362.6 0 0 16 7 1 165 863 5352.275 1 159 989 6 12 1 4 1 037 098 149 695.9 888 752.0 3 0 5 15
SA 897 410.6 335 558 507 441.3 7 1 13 2 1 176 523 6642.833 1 166 064 3 17 1 2 915 595.3 174 542.0 724 988.7 0 0 21 2

SS

OI 954 296.7 309 717.2 503 683.7 0 1 18 4 1 159 944 4625.848 1 154 170 9 0 4 10 966 962 185 178.4 709716.7 0 0 14 9
IE 890 450 331 359.5 503 577 0 1 21 1 1 157 407 2908.019 1 153 313 12 0 10 1 909 562.2 191 564.5 715 197.7 0 0 22 1
GD 901 304.4 318 336.8 512 227.5 0 0 19 4 1 163 653 5947.454 1 153 877 7 5 4 7 1 051 630 158 466.0 796 619.7 0 0 6 17
SA 1 033 356 279 217.1 503179.9 2 5 3 13 1 193 165 12 102.5 1 172 053 0 20 1 2 1 006 618 139 652.5 865 298.6 2 0 11 10

BC1

OI 1 017 607 269 931.9 504 240.6 4 3 10 6 1 157 912 4268.111 1 152 016 12 0 8 3 961 814.5 146 688.9 847 534.9 0 0 15 8
IE 954 623.2 310 068 503 778 0 2 17 4 1 157 845 2361.792 1 153 846 12 0 9 2 948 691.5 202 485.5 715 964.6 0 0 18 5
GD 1 019 792 262 406.7 520 265.8 1 1 9 12 1 165 804 4712.667 1 159 465 6 10 2 5 1 015 068 145 941.5 863 000.8 0 0 11 12
SA 1 094 167 200 550.3 524 828.7 0 1 2 20 1 175 229 9798.443 1 160 472 3 15 2 3 1 149 290 108 926.1 875 269.0 0 0 1 22

BC2

OI 1 022 245 271 446.7 506 149.7 3 2 5 13 1 158 108 3064.212 1 154 801 12 0 6 5 946 126.7 170 570.6 712 130.1 2 0 17 4
IE 1 083 655 203 111.5 505 640.4 1 6 2 14 1 160 262 4545.656 1 154 801 8 1 4 10 907068.4 148 560.6 711 692.3 2 0 21 0
GD 772454 326 280.5 513 747 14 0 9 0 1 163 942 5104.055 1 159 329 7 8 2 6 1 038 822 158 323.7 787 218.7 0 0 7 16
SA 1 025 201 272 507.9 505 311 3 4 3 13 1 174 240 7891.829 1 162 200 3 17 3 0 955 156.5 179 669.8 723 532.5 3 0 14 6

BC3

OI 1 018 111 270 402.6 504 178 4 3 9 7 1 159 053 2995.128 1 153 450 10 0 7 6 960 748.8 190 268.4 717 989.2 0 0 16 7
IE 1 018 309 269 746.9 505 562.6 5 3 7 8 1 158 061 4283.742 1 153 450 10 0 9 4 1 022 398 163 137.5 852 852.7 0 0 10 13
GD 1 022 388 267 220.8 514 220.8 1 1 6 15 1 163 776 6067.37 1 153 096 7 5 3 8 1 007 909 142 033.1 878 759.1 0 0 12 11
SA 964 666.4 313 115.4 508 082.8 7 0 8 8 1 184 109 13 971 1 163 501 0 17 3 3 1 036 176 170 838.1 784 252.6 3 0 6 14

BC4

OI 889 710.7 331 107.8 503 325.3 1 1 21 0 1156214 2653.784 1 151 664 13 0 10 0 1 059 117 147 778.2 853 916.5 0 3 4 16
IE 1 148 912 992.0097 1 147 053 1 7 0 15 1 159 171 5824.655 1151332 8 0 8 7 1 110 503 134 021.6 853 970.7 2 6 1 14
GD 1 170 877 20 013.35 1 148 896 0 7 0 16 1 188 886 13 064.33 1 170 392 0 20 2 1 1 206 921 11 676.23 1 189 541.0 0 2 0 21
SA 1 034 823 276 569.6 504 363.9 3 9 1 10 1 196 367 18 069.89 1 173 335 0 20 0 3 1 132 735 126 262.9 887 238.7 0 1 2 20
able 6
ong-run experiment results on Instance 4 over 10 000–20 000 iterations using algorithms identified as top performers from initial experiments. Costs are in euros and power is in
W. M1 is run for fewer iterations as it only utilises half the available low-level heuristics. Best values and algorithm highlighted in bold.
Model 1 Obj value Turbine costs Cabling costs Initial power Net power Iterations

SR:SA Initial 1 215 651.941 400 000 000 39 553 772.98 380 361.579 10 000Final 1 165 973.054 400000000 25 072 631.06 380 364.565

BC3:IE Initial 1 220 731.388 400 000 000 40 456 068.52 380 360.813 10 000Final 1144670.286 400000000 18202570.88 380 365.348

Model 2 Obj value Turbine costs Cabling costs Initial power Net power Iterations

SR:IE Initial 1 246 198.183 230 000 000 20 775 423.47 218.5 201.2323778 20 000Final 1134551.794 290000000 11517439.13 275.5 265.7590783

BC1:OI Initial 1 291 983.711 360 000 000 37 433 156.93 342 307.6146808 20 000Final 1 149 372.179 400 000 000 16 306 408.95 380 362.2033112

Model 3 Obj value Turbine costs Cabling costs Initial power Net power Iterations

BC2:GD Initial 1 228 532.417 400 000 000 39 910 328 380 358.0779163 20 000Final 1 151 705.025 400000000 15901043.5 380 361.1176772

BC2:SA Initial 1 214 633.283 400 000 000 39 704 217.89 380 362.005738 20 000Final 1 172 362.878 400000000 19 082 779.61 380 357.4684829

BC4:OI Initial 1 216 328.864 400 000 000 40 684 725.73 380 362.307217 20 000Final 1142579.182 400000000 18 057 543.06 380 365.8893402
ig. 15. Model 1 with (a) Simple Random: Simulated Annealing objective value over 10 000 iterations, combined with the simulated annealing temperature, and (b) Best Choice
: Improve or Equal best objective value over 10 000 iterations.
a
a

alue of nearly 15,000. However, both algorithms had different ini-
ialised numbers of turbines due to the random start element of Model
, therefore the difference may not be significant with BC1:OI having
13

b

larger number of initial turbines, possibly adding complexity to the
bility to solve the problem efficiently. This additional complexity can
e seen within the final layout for both algorithms in Fig. 17. Fig. 18
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Fig. 16. Model 1 algorithm heuristic utilisation rates Simple Random: Simulated
Annealing (left) and Best Choice 3: Improve or Equal (right).

Fig. 17. Windfarm layout for Model 2 algorithms Simple Random: Simulated Annealing
(top) and Best Choice 1: Only Improve (bottom) after 20 000 iterations on Instance 4.

shows, as expected, LLH utilisation rates are even when using simple
random (SR) however when using best choice 1 (BC1) there was a clear
preference toward LLH1, which moved turbines within a nearby space.

For Model 3, Table 6 shows that none of the three algorithms
tested added or removed any turbines from the initial starting number
of 40. Within the final objective value, it can be seen that BC4:OI
outperformed the other two algorithms, even with BC2:SA having a
slight advantage with a lower initial objective value. However, BC2:GD
was able to find significantly cheaper cabling costs, but this was at the
expense of net power with an increase in losses due to the wake effect
as turbines got closer together (minimising cable distance). Fig. 19
highlights that BC2:SA got stuck within two local optima, consistently
going back and forth between them. Whilst BC2:GD successfully use the
14
Fig. 18. Low-level heuristic usage for each algorithm within Model 2 applied to
Instance 4 for 20 000 iterations.

Fig. 19. Objective over 20 000 iterations for Model 3 with algorithms Best Choice 2:
Great Deluge (top), Best Choice 2: Simulated Annealing (middle) and Best Choice 4:
Only Improve (bottom).

GD acceptance threshold to move away from a local optimum. From
these results, the overall best algorithm was BC4:OI with the lowest
objective value.

Best pairings of selection method and move acceptance criteria for
Model 1, 2 and 3 from the further experiments conducted upon Instance
4 are: BC3:IE, SR:IE and BC4:OI. Fig. 20 shows the utilisation rates
for each of the three selection hyper-heuristics where the LLH chosen
resulted in an improvement (reduction in solution objective). Model
1 was restricted to just LLHs that impact cabling and within those,
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Fig. 20. Low-level heuristic utilisation that resulted in improvements for Model 1 (Best Choice 3: Improve or Equal), Model 2 (Simple Random: Improve or Equal) and Model 3
(Best Choice 4: Only Improve). Shades of red indicate heuristics that aim to impact turbines, shades of blue represent those that impact cabling.
LLH6 (connect endpoint to nearest turbine) proved most successful
in finding improvements. With LLH8 (connect any point to nearest
turbine) second. Within Model 2, which had a randomised turbine start,
the movement of turbines, LLH1, provided the most improvements as
expected because this heuristic allows for minimisation of the wake
effect to occur. Model 3 benefited most from LLH6 in the same fashion
as Model 1, LLH6 was also the second most successful within Model
2. These results indicate that the simpler the low-level heuristic the
more accessible it was to bring about an improvement in the solution
objective value.

The results show that the customised selection methods were un-
able, in this instance and run, to beat a simple random selection (SR)
method paired with improve or equal (IE) (layout shown in Fig. 17).
With an overall objective value of 0.88% and 0.7% better than BC3:IE,
BC4:OI respectively. In terms of model type (sequential against si-
multaneous), the results do not give a clear decisive answer. With a
very small variation recorded between each final objective, it cannot
conclusively determine if either outperforms the other. In addition,
the randomness of each low-level heuristic must be considered and
that some selection hyper-heuristics may have been ‘lucky’ with the
improvements found by each LLH.

Li et al. [2] implemented a range of hyper-heuristics to control state-
of-the art low-level metaheuristics to solve each aspect of the windfarm
layout. Their findings showed that random choice (referred to as simple
random on this paper) performed better than the implemented choice
function (similar to BC1,2,3 and 4 in this paper). These findings are
consistent with findings when applied to Instance 4 from the long-run
experiments, where simple random prevailed as the most effective in
finding an optimal solution. The Borselle 4 problem instances have
also been solved by Fischetti [1]. This was solved in stages and used a
range of methodologies including heuristics and MILP. However, it is
not possible to directly compare results due to the varying constraints,
power data, turbine costs considered and complexity of the windfarm
optimisation problem, alongside the difficulty in replicating the cable
routing optimisation undertaken within the paper.

6. Conclusion

This paper investigated the application of selection hyper-heuristics
to solving the windfarm optimisation problem; specifically, the pro-
posal to combine both the turbine optimisation problem and cable
routing problem simultaneously, rather than sequentially. Objectives
included the maximisation of the expected net power, minimisation
of both turbine costs and cabling costs. The aim was to solve this
complex problem computationally using selection hyper-heuristics that
combined a selection method with a move acceptance criteria. Several
previously documented selection methods and move acceptance were
used alongside the development of customised selection methods. These
selection hyper-heuristics were applied to three different models: M1 —
sequential optimisation, M2 — simultaneous optimisation with random
start and M3 — simultaneous optimisation with an optimised start. Fur-
ther experiments run on the best selection hyper-heuristic combinations
15
found within the initial experiments, identified the following three
algorithms as the best for each model type BC3:IE (M1), SR:IE (M2)
and BC4:OI (M3). Empirical results indicated that there was no clear
best model with all three solutions less than 1% apart. M2 performed
the best using a combination of simple random as the selection method
and improve or equal as the move acceptance. The custom selection
methods, BC3 and BC4, performed almost as well. To summarise, the
findings did not meet the expectations laid out in Section 5.1, with no
clear difference between each model type.

To conclude, it was found selection hyper-heuristics can effectively
find feasible windfarm layouts with the combined optimisation shown
to be a potential method for future windfarm design. However, it
is not conclusive in determining whether sequential optimisation or
simultaneous optimisation was better overall; further experiments are
required to arrive at a decisive outcome. Therefore, one cannot reject
or accept the null hypothesis defined in Section 5.1.

6.1. Study limitations

Whilst selection hyper-heuristics are relatively easy to implement,
there were some limitations due to the scope of this paper. Firstly, the
cabling data was modified for confidentiality reasons and subsequently
is not reflective of the true cost. Additionally, turbine costs were
estimated at 10 million however, these may differ in the real-world
scenario. The initial decision to reduce the overall complexity of the
model involved removing consideration of flexible cabling (non-straight
lines), cable hang, ocean floor conditions or varying foundation costs
at each site. Whilst reducing complexity for the purpose of this study,
it also reduced accurate representation of the true situation.

The objective function used further limited the scope of the study
insofar as it included the initial costs of the layout but did not take
into account the long-term benefits of producing power, which could
be sold. Introducing this factor would enable a more accurate reflection
of the long-term costs and rewards of constructing the windfarm.

The range of low-level heuristics available was restrictive. The com-
plexity of an electrical cabling layout, with many inputs, meant it was
difficult to develop low-level heuristics to successfully manipulate some
layouts of cabling running the risk of a worse optimisation overall.

Reflecting upon the work undertaken, the following areas are rec-
ommended as of potential research interest: (i) Consideration of more
factors within the optimisation (foundation costs, flexible cabling, ob-
stacles and various turbine capacities); (ii) Introduction of additional
low-level heuristics that are capable of better modifying the cabling
layout; and (iii) Potentially fix the number of turbines and modify the
objective function to have a minimum expected power production, with
the inclusion of a required power threshold for each site to be placed.
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