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Abstract

The university course timetabling problem is a challenging problem to solve. As universities have
evolved, the features of this problem have changed. One emerging feature is hybrid teaching
where classes can be taught online, in-person or a combination of both in-person and online.
This work presents a multi-objective binary programming model that includes common university
timetabling features, identified from the literature, as well as hybrid teaching features. A lexi-
cographic solution method is outlined and computational experiments using benchmark data are
used to demonstrate the key aspects of the model and explore trade-offs among the objectives
considered. The results of these experiments demonstrate that the model can be used to find
demand-driven schedules for universities that include hybrid teaching. They also show how the model
could be used to inform practitioners who are involved in strategic decision-making at universities.
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1 Introduction

Timetabling for universities is a very challenging
problem and one of the most interesting edu-
cational timetabling problems to research. The
interest and challenges arise because the decisions
that need to be made impact many different stake-
holders and resources. By modelling the university
timetabling problem we hope to gain insight into
some of the interactions between many stakehold-
ers and types of resources.

One major factor increasing the difficulty of
this problem is that students have a choice in the
degree program and a choice in the modules that

they attend. This means the output of the uni-
versity course timetabling problem should be a
timetable for each student. This issue is exacer-
bated by the fact that universities typically enrol
significantly more students than other types of
educational establishments. Allowing students to
choose some of the modules they take means there
is a stronger interdependence in these choices. Stu-
dents can interact with each other and therefore
may influence each other’s choices. One possible
consequence of this is inconsistent class sizes.

Teaching spaces at universities are more
diverse than other educational establishments
because they are primarily places of research for
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multiple disciplines, with each discipline requir-
ing specialist equipment and facilities. This means
there are more constraints on how classes are
assigned to teaching spaces. This diversity con-
tributes to a higher dispersion of facilities. Teach-
ing spaces of different shapes and sizes do not
fit together as neatly as teaching spaces that are
uniform in size. Therefore, more space is needed
for the university which can increase travel time
between classes. Dispersion of teaching facilities
can also be a consequence of the university layout.
Some universities are campus universities meaning
most of the buildings are on a single site, but some
universities are city universities where university-
owned buildings are mixed amongst other build-
ings. There can be a mix of the two with some uni-
versities spanning multiple cities and campuses.
Travel time between buildings for any layout needs
to be considered when timetabling. Universities
also have longer working hours than other educa-
tional establishments meaning a greater number of
times that classes and other meetings can happen,
increasing the scale of the timetabling problem.

An emerging factor that complicates the
timetabling process is the increasing use of
“hybrid teaching”. This is where a class can be
held completely online or in a “hybrid mode”
where some students attend in-person and some
attend online. The inclusion of hybrid teaching
means that student allocation involves deciding
what classes a student attends as well as deciding
how they attend these classes. Different students
respond differently to each mode of teaching and
therefore this needs to be accounted for when
assigning students to classes.

If a timetable is produced that does not
address these complexities, then students and staff
will be unhappy with the timetable. Students
often pay a lot of money to attend university and
a timetable that impacts their ability to attend
classes could encourage them to discontinue their
studies. For staff who research at the university, a
timetable that does not allow them enough time to
research around teaching or does not cater to vari-
ous personal requests could cause them at worst to
leave their position at that university, negatively
impacting the teaching.

Therefore, being able to produce timetables
that can consider the above complexities is imper-
ative to the successful operation of a university.
At a high level, universities have strategic goals

that they want to achieve (for example, achiev-
ing a high output of novel research). This requires
careful management of resources and people which
automated scheduling can help facilitate. The final
timetables produced specify exactly what needs to
be done at an operational level to work towards
these goals.

There already exists a significant amount of
literature that addresses various aspects of the
university course timetabling problem. However,
to the best of our knowledge, the literature lacks
models that explicitly include the emerging issue
of hybrid teaching. This paper aims to close
this gap by demonstrating how hybrid teaching
can be incorporated explicitly into a university
timetabling model. This includes specifying what
information needs to be known about the univer-
sity and what sort of variables and constraints
need to be part of the mathematical model that
produces timetables for students.

The objectives of this paper are to achieve the
following: (i) provide a timetabling model that
explicitly incorporates hybrid teaching, (ii) iden-
tify the benefits of including hybrid teaching in the
timetabling model and (iii) discuss how this model
gives rise to several interesting research directions
and how this model could be used in a strategic
decision making context.

The rest of the paper is structured as follows.
In Section 2, a review of existing work in the
context of university timetabling is provided. In
Section 3, a brief description of the problem to be
modelled is given. A mathematical formulation of
this problem is given in Section 4. The method
used to solve this problem is given in Section 5
and this method is used in Section 6 for various
computational experiments. Section 7 includes a
discussion about the results and extensions to the
model. Finally, in Section 8 there is a summary of
the work done in this paper.

2 Related work

University timetabling problems have been stud-
ied for a long time with one of the earliest papers
in the literature presenting a method for university
examination timetabling (Broder, 1964). There
are three types of university timetabling problems:
post-enrolment-based timetabling, curriculum-
based timetabling and examination timetabling
(Lewis and Thompson, 2015).
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The examination timetabling problem is the
problem of assigning examinations to locations
and times. Considerations need to be made to
ensure that students can attend all the exams
they need to and to ensure that the locations
have enough capacity for the exams to take place.
Curriculum-based timetabling is where events
(such as lectures and seminars) are grouped to
form fixed curricula which are then assigned
to times and locations and post-enrolment-based
timetabling is where events are assigned times and
locations with respect to student demand and/or
enrolment data (Lewis and Thompson, 2015).

This paper focuses on a combination of
the curriculum-based and post-enrolment-based
timetabling problems known as the university
course timetabling problem (UCTTP). The goal
of this problem is to assign people to events and
these events to times and locations subject to var-
ious constraints (Babaei et al., 2015). Events are
typically grouped into “courses”, hence the name
UCTTP, however, this paper uses the term “mod-
ule”. The reason we do this is that universities in
the United Kingdom (UK) typically use the phrase
“course” to describe a programme of study that is
made up of modules. For example, an undergradu-
ate mathematics course may contain modules that
cover algebra.

The earliest UCTTP models were graph the-
oretic models (de Werra, 1985). The univer-
sity course timetabling is an NP-hard problem
(Cooper and Kingston, 1996) and therefore early
mixed integer programming (MIP) models for
timetabling problems (see Badri, 1996) could only
be solved exactly for small instances. As time
went on and universities became bigger and more
complex the demand for sophisticated models and
solution methods became greater. Lewis (2008)
and Burke et al. (2012) provide reviews that
primarily cover heuristic and hyper-heuristic algo-
rithms, approaches that have dominated the field
for over two decades. However, thanks to improve-
ments in computers and MIP solvers, matheuris-
tics are the current focus of the timetabling
community (see Mikkelsen and Holm, 2022).

There have been several papers reviewing
research on the UCTTP. Two recent papers that
review some of the state-of-the-art solution meth-
ods are Tan et al. (2021) and Chen et al. (2021).
For less recent but more feature-focused reviews

that are useful for understanding the field see
Babaei et al. (2015) and Aziz and Aizam (2018).

2.1 Key timetabling features

In this section, papers are reviewed according to
general model features that are of importance
when tackling the UCTTP. For each paper, a brief
description of the paper is given and what it con-
tributes to the literature is highlighted. Model
features, the modelling approach, and the data
used are summarised for each paper in Tables 1-3.

Typical resource allocation

Badri (1996) proposes a binary program to
model a departmental assignment problem at the
United Arab Emirates University. This paper, to
our knowledge, is the earliest paper to include
constraints similar to the set-packing problem
(Skiena, 2008) which are useful when you need
to constrain choosing a certain number of items
selected from a collection of options. In their
model, they penalise using more rooms than avail-
able and not meeting instructor preferences. This
is done using a goal programming approach where
there are penalties for deviations above or below
a desired level.

Di Gaspero and Schaerf (2006) use a local
search method to solve the course timetabling
problem involving assigning lectures for courses
to periods and rooms. The main purpose of their
paper is to demonstrate their local search method.
By using a simple solution representation, moves
between solutions in the search do not lead to
infeasibility. The two hard constraints maintained
between moves are ensuring no more than one
lecture happens in a single room at the same
time and ensuring all lectures in a module are
offered. The quality of the solution is a weighted
sum of violations of soft constraints. The soft con-
straints include features such as room capacity
and instructor availability. They also include tem-
poral constraints spreading lectures across several
days and spacing lectures within days to avoid
gaps.

Overlapping timeslots and irregular weekly
timetables are allowed in the problem defined
by De Causmaecker et al. (2009). This was to
accommodate the structure of teaching at KaHo
Sint-Lieven School of Engineering. A feature not
included in their problem that others such as
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Badri (1996) include is the assignment of staff.
It is assumed staff already know what they will
teach so constraints are included to ensure they
can attend all events they need to. The solu-
tion method is very similar to Di Gaspero and
Schaerf (2006), using a local search algorithm to
find solutions.

Chaudhuri and De (2010) define a timetabling
problem including many of the features seen in the
problems discussed so far. This includes various
temporal constraints, staff preferences and con-
flicting resource assignments. A constraint seen in
this problem that has not been discussed yet is
ensuring that assignments are “compatible”. For
example, a chemistry class may only be held in a
chemistry lab and so the set of compatible rooms
for a chemistry class is the set of all chemistry
labs at the university. This notion of compatibil-
ity extends to any assignment of events or people
to resources.

The problem described in Aizam and Cac-
cetta (2014) is a binary program like in Badri
(1996). In this paper, they start by describing a
basic model that contains constraints that they
deem necessary for every timetabling problem and
then suggest extra constraints to account for addi-
tional features that could be included. This is
one advantage of using a binary program for-
mulation. One feature in this model (and the
previously discussed models) that is worth point-
ing out is “completeness”. This is where every
event is assigned resources or every student is
assigned to every class they need to be.

An example of a model where completeness
is not necessary is given by Méndez-Dı́az et al.
(2016). There is more emphasis on the post-
enrolment features of the UCTTP. The objective
of their model is to maximise the total weighted
preference for the assignments of students to
modules. Due to student demand driving the
timetable, it is not necessary for all events to
be assigned a location and a time. One feature
that causes this uncertainty in whether events are
assigned or not is the structure of modules. In
Méndez-Dı́az et al. (2016), modules are composed
of one or several commissions, which are instances
of the same module. The literature also refers to
this as “configurations” (Müller et al., 2018). If it
is known that all students are assigned to a single
commission, then the events in other commissions
do not need to be assigned.

The Integer Linear Program (ILP) described
by Fonseca et al. (2017) covers many of the fea-
tures described in the models seen so far. It
includes some of the constraints outlined by Aizam
and Caccetta (2014) in their basic model and also
includes constraints described by the eXtended
Markup Language for High School Timetabling
(XHSTT) format (Post et al., 2014). This for-
mat is one example of an attempt to generalise a
description of any high school timetabling prob-
lem.

Scheduling issues

One of the earlier discussions surrounding stu-
dent scheduling issues is given in (Carter, 2001).
This model operates a “demand driven” approach
where students choose modules and then a
timetable is found to best match these requests.
They use clustering techniques to group stu-
dents with similar requests and assign these to
sections to minimise expected conflicts. Then once
a timetable is found, the student sectioning is
repeated considering individual student conflicts.

In the model described by Schimmelpfeng and
Helber (2007), room assignment and staff assign-
ment are the most important features. Rooms
should not be assigned to more than one class at
a time or contain classes with an attendance that
exceeds the room capacity. Staff members can not
be assigned to a time when they are not available
and other staff preferences should be respected.
These include a variety of teaching staff requests
such as breaks, consecutive or distributed teaching
slots, and a maximum number of teaching slots.
Unlike the timetabling seen in other papers such
as Carter (2001), students are an afterthought.

Gonzalez et al. (2018) create a MIP that
schedules courses for the United States Air Force
Academy (USAFA). The interesting scheduling
issue in this problem is that students who are at
the USAFA have work commitments as well as
academic commitments. They utilise a goal pro-
gramming approach to meet as many requirements
as possible including minimising student registra-
tion conflicts, where a student is assigned two
modules that conflict. They state that in practice
it is impossible to remove every conflict.

The MIP model described by Holm et al.
(2020) was constructed to solve the problem
designed by the organisers of the ITC-2019
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(Müller et al., 2018). In this problem, student con-
flicts are minimised as part of a weighted objec-
tive. In their follow-up paper, where they describe
their graph-based MIP (Holm et al., 2022), they
discuss the importance of identifying assignments
that lead to inevitable conflicts and assignments
that lead to impossible conflicts. This preprocess-
ing step helps minimise the work that needs to be
performed by the solution method.

Student movement and travel

When dealing with the movement of students, one
aspect Daskalaki and Birbas (2005) aim to control
is the number of classroom changeovers. Minimis-
ing the number of classroom changes means that
there is less noise and congestion in spaces on cam-
pus. To do this, they name a preferred classroom
for each student group and try to ensure that the
group stays in that classroom and has consecu-
tive sessions in that room. This is however not a
realistic representation of a general university as
students can not typically be grouped so easily
and need to be considered as individuals.

Al-Yakoob and Sherali (2007) deal with park-
ing and traffic congestion issues in their paper.
This is achieved primarily by limiting the number
of students on campus at any given time. A hard
limit for the whole campus could lead to some
timeslots having a few very crowded departments
whilst the others are empty. This is unfair to the
busy departments so to make this fair they also
impose a minimum and maximum attendance at
the department level to distribute congestion over
the entire campus.

Vermuyten et al. (2016) also try to avoid con-
gestion as in Daskalaki and Birbas (2005), how-
ever, their approach does not try to achieve this
by fixing students in one place but by changing
how many students move along various corridors
at a given time. A graph that represents the fac-
ulty building is used so they can optimise the flow
of students through arcs and the resulting travel
times. The element they minimise overall is the
maximum travel time seen in an arc. A two-stage
decomposition is used where most of the sched-
ule is determined in the first stage, and classes
and rooms are swapped around in the second
to locally optimise student flow. Optimising the
schedule and the flow together is computationally
expensive.

Gogos et al. (2022) work with a problem that
focuses on minimising the number of times in a
week that students travel to university. The moti-
vation is that students who do not live on campus
do not want to spend excessive money on public
transport and want to reduce the risk of catching
an illness from other passengers. They approach
this problem by calculating the minimum number
of days a student would need to attend university
and then trying to minimise the number of excess
days the student is on campus. This is limited as it
does not consider the time of travel (certain times
are busier) or if students make multiple journeys
in a single day (multiple campuses).

Scarce resources

The timetabling model in Dammak et al. (2008)
includes a few of the features seen in other papers.
One feature relating to the usage of resources is
their aim of maximising the occupancy of class-
room seats. Since their paper presents only a
heuristic to produce a feasible solution, this objec-
tive is not explicitly optimised. However, in the
construction of the feasible solution, they order
the classrooms and student groups in a non-
increasing fashion so that large student groups are
placed in large classrooms.

Lindahl et al. (2018) approach the UCTTP
differently. They break from the operational
timetabling problem and move towards a strate-
gic approach. Three problems are presented in
this paper. The first is the “quality problem”
that is similar to the other papers that produce
a timetable that is high quality by some measure.
The second finds the minimum number of rooms
needed. The third finds the minimum number
of times needed. They solve a collection of bi-
objective models to create solution frontiers that
can be used to analyse gain in quality by not using
the minimum amount of resources.

Barnhart et al. (2022) experience scarce
resources due to the COVID-19 pandemic. This
context applied to most if not all universities
at the time. They tackle a term-planning prob-
lem and a timetabling problem within the same
paper. The timetabling problem involves work-
ing out when and where events take place except
for modelling purposes classrooms are bundled
into blocks. These blocks can be considered as
“larger classrooms” but there are fewer of them
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in total. The idea at MIT was to have students
“rotate” between coming onto campus and attend-
ing online. Like the work of Al-Yakoob and Sherali
(2007), they have a global cap on the number of
students on campus at any time to reduce the
usage of unscheduled resources (toilets and shops,
for example).

Hybrid teaching

The only paper, to our knowledge, that explic-
itly discusses the timetabling problem with hybrid
teaching is Barnhart et al. (2022). In this paper,
the online teaching space is modelled as a fictitious
block of classrooms with zero in-person capac-
ity. The timetabling model tries to maximise the
number of modules students can attend with a
preference for the in-person format. However, the
limitation of this model is that classes can only be
offered online or in-person rather than potentially
having some students attend physically and some
attend online.

An example of where we can see multi-
ple instructional modes, including a true hybrid
approach, is in the open-source solver UniTime
(UniTime, 2023). These features are implicit here
and in the description of the ITC-2019 problem
(Müller et al., 2018) as the ITC-2019 problem is
a simplified variant of the UniTime problem. For
example, the ITC-2019 problem may have two
classes that should occur simultaneously with one
class not requiring a room assignment, emulating
a hybrid setup. There are also cases where classes
do not require rooms or where the class subscrip-
tion limit is greater than the capacity of all the
available rooms.

2.2 Our contributions

This review of the literature outlines not only
the importance and continued relevance of the
UCTTP, but also outlines some of the features of
the problem. These include features that are very
common across models as well as features relat-
ing to specific or emerging issues. Features seen
in the literature have been collected in Table 2.
Table 3 provides information on how the problem
was modelled and what data was used. For both
tables, the columns have been ordered by year of
publishing.

Table 2 shows that the choice of features
included varies from model to model. This is

because authors have tried to take on the
timetabling issues present at the university where
they work. The result is that much of the litera-
ture consists of very focused models that do not
generalise well, implicitly seen in Table 3 where
76% of papers in this review use internal data to
solve the problem.

Table 2 shows that the most studied features
include room capacity issues, room and time pref-
erences and staff/student conflicts. Table 3 sug-
gests that the most popular modelling approaches
include integer/binary programs. Table 2 is also
useful for spotting emerging features of inter-
est. The most notable aspect is the increasing
number of models that are primarily driven by stu-
dent demand or models that consider individual
student requests.

It can also be seen from Table 2 that as the
field has progressed over time, researchers are gen-
erally including more features in their models.
This is also reflected in Table 3 which shows that
researchers and practitioners in the timetabling
field are starting to explore bi-objective and multi-
objective approaches.

One major gap in the research is the explicit
study of online or hybrid teaching. During the
COVID-19 pandemic, many universities needed
to adapt to using these formats. However, the
university timetabling problem with hybrid mod-
ule delivery considerations has not been ade-
quately addressed. The model that is presented
in this paper includes “traditional” features of
the UCTTP and explicitly incorporates the new
element of hybrid teaching. The aim of this is
to introduce one approach to explicitly modelling
hybrid teaching at universities using binary pro-
gramming so that other researchers can include
hybrid teaching in future models. Due to the rar-
ity of this feature in existing models, there is little
analysis of how this feature impacts other features
of the timetabling problem that are well-studied.

Students and staff at universities are acutely
aware of the pedagogical and logistical issues relat-
ing to hybrid teaching and the starting point for
resolving these issues is being able to represent
hybrid teaching in a mathematical sense. With
this in mind, the key contributions of this paper
are the following:

• Outline the information that needs to be col-
lected about the classes to determine if a class
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can happen in the online/hybrid mode and
what extra information about students needs
to be known to best cater to their teaching
preferences.

• Present a description of a generic UCTTP with
hybrid elements along with a proposed binary
program formulation of the problem.

• Demonstrate the model using the most up-to-
date benchmark data available to show how
the hybrid elements would work in practice and
illustrate some of the interactions with other
problem features.

• Discuss how this model could be used to pro-
duce a timetable that achieves a particular
strategic goal as well as identify unresolved
logistical problems with hybrid teaching and the
research questions that these problems present.

3 Problem description

What our review has exposed is a lack of literature
explicitly modelling hybrid teaching at universi-
ties. Where there are explicit instances, there is
a lack of analysis regarding the benefits or draw-
backs associated with the incorporation of this
feature. As stated in the previous sections, the
objective of this paper is to focus on this par-
ticular feature of the UCTTP and provide some
managerial insights regarding this feature. This
feature is important to be studied in conjunction
with other features of the timetabling problem to
shed light on its impact on the resulting sched-
ule. In this section, we introduce a multi-objective
university timetabling model with hybrid teaching
considerations.

The timetabling problem we are modelling is
the post-enrolment approach where students pro-
visionally select modules they want to take and
after this is done, a timetable is constructed.
Timetabling practitioners at universities in the
United Kingdom (UK) often take this approach.
This timetable is typically constructed before the
term starts, especially in the case of the first term
when new students register in August and start
studies in late September. To mirror this process,
the timetabling problem in this paper is also a
post-enrolment timetabling problem. Part of the
input to the mathematical model is a list of stu-
dents and modules they are requesting to take. A
module request is met if the student is assigned to

an appropriate arrangement of classes (the partic-
ular arrangement varies between universities).

As we are focusing on hybrid teaching, an
additional input is that each student may also pro-
vide a preference for a particular mode of module
delivery (online and/or in-person). If a student
expresses a preference for a particular mode then
it is assumed this preference applies to all modules
they want to attend.

One novel element here is that the travel time
between two classes may be different for two stu-
dents taking the same classes but in different
modes. For example, a student attending online
only can in theory switch instantly between classes
whereas a student attending in-person will need
to walk between rooms. If a student does not
have enough time to travel between classes or is
assigned classes that overlap, this is referred to as
a scheduling issue.

The decisions we are making in this problem
are the following: (i) when and where are classes
being held, with the option for classes to be held
online and in-person simultaneously and (ii) what
classes students attend and the mode of study they
attend the classes. These decisions are made with
respect to three different objectives: (i) maximis-
ing module requests met, (ii) minimising the total
number of scheduling issues and (iii) minimising
the total number of classes where a student does
not attend in their preferred mode.

There are constraints on these decisions.
Classes are only assigned to compatible times.
What makes a time compatible for a class depends
on the university, however, what we mean by com-
patible is that the time meets some set of criteria
that allows the class to be assigned to it. Similarly,
classes are only assigned to spaces that are avail-
able and compatible. In this case, available means
that the space is not in use by other classes and is
free to be used by a class. For example, a chem-
istry class may need to occur in the afternoon to
allow for the setup of equipment in the morning
and cannot be assigned a space without the cor-
rect equipment or space in use by people doing a
different experiment.

Hybrid teaching is only done if the class is
assigned the appropriate space. For a teaching
space to be capable of hosting a hybrid meeting, it
needs to have a particular layout and equipment.
In practice, it is not usual that every room meets



Springer Nature 2021 LATEX template

8

Table 1 Indices of the features, modelling approaches and data referenced in Tables 2-3

Index Description

F
ea
tu
re
s

1 Conflicts for teaching staff are considered
2 Conflicts for students are considered
3 Complete timetable
4 Overlapping times
5 Explicit use of online classes
6 Explicit use of hybrid classes
7 Mode requests
8 Student choice in modules
9 Students have compulsory modules
10 Staff travel time considered
11 Student travel time considered
12 Room capacity
13 Co/Prerequisite courses
14 Individual student assignment
15 Room assignment restrictions/preferences
16 Time assignment restrictions/preferences
17 Number of students on campus limited
18 Enrolment data used in the model
19 Physical student flows are considered
20 Switching classes or locations
21 Rooms and equipment have capacity and usage restrictions
22 Compact timetable preferred

M
o
d
el
li
n
g
ap

p
ro
a
ch
es 1 Mixed integer program

2 Integer program
3 Binary program
4 Neighbourhoods
5 Graph colouring
6 No explicit objective
7 Single objective
8 Bi-objective
9 Multi-objective

D
at
a
u
se
d 1 Institution (Data from the author’s university)

2 International Timetabling Competition 2019 (Müller et al., 2018)
3 International Timetabling Competition 2011 (Post et al., 2013)
4 International Timetabling Competition 2007 (Mccollum et al., 2010)

these criteria. Therefore the collection of phys-
ical spaces at the university can be partitioned
into those that are capable of hybrid teaching
and those that are not capable of hybrid teach-
ing. There are two limits on class attendance.
There are limits imposed on the number of stu-
dents attending a class for pedagogical reasons and
room capacity limits so that students can fit into
the physical space assigned to the class.

The structure of modules is assumed to be
the same as in the ITC-2019 competition (Müller
et al., 2018). Modules are made up of config-
urations, which are made up of subparts. Each
subpart contains a collection of classes. For a stu-
dent to attend a module, they need to attend
a class from every subpart within a single con-
figuration. For example, a module may have one
configuration containing two subparts. The first
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00
6)

✓
✓

✓
✓

✓
✓

✓
✓

✓
S
ch
im

m
el
p
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n
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an

d
H
el
b
er

(2
00
7)

✓
✓

✓
✓

✓
✓

A
l-
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ak
o
ob

an
d
S
h
er
al
i
(2
00
7)

✓
✓

✓
✓

✓
✓

✓
D
am

m
ak

et
al
.
(2
00
8)

✓
✓

✓
✓

✓
✓

✓
✓

D
e
C
au

sm
ae
ck
er

et
al
.
(2
00
9)

✓
✓

✓
✓

✓
✓

✓
✓

C
h
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d
h
u
ri

an
d
D
e
(2
01
0)

✓
✓

✓
✓

✓
S
an

to
s
et

al
.
(2
01
2)

✓
✓

✓
✓

✓
A
iz
am

an
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ce
tt
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01
4)

✓
✓

✓
✓

✓
✓

✓
✓

✓
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et
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01
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✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
V
er
m
u
y
te
n
et
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✓
✓

✓
✓

✓
✓

✓
✓
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✓
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✓
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✓
✓

✓
✓

✓
✓

✓
✓

✓
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✓
✓

✓
✓

✓
✓

✓
✓
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✓
✓

✓
✓

✓
✓
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✓
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et
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.
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2)

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

H
ol
m

et
al
.
(2
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2)

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

G
og
os

et
al
.
(2
02
2)

✓
✓

✓
✓

✓
✓

✓
✓

✓

T
h
is

p
ap

er
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓
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✓
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✓
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✓
✓
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✓
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✓
✓

✓
✓



Springer Nature 2021 LATEX template

11

subpart could contain a single class in the form of
a lecture. The second subpart could contain mul-
tiple classes that are seminars. This structure is
used in this problem for two reasons. Firstly, it is
a good representation of most forms of university
modules. Secondly, it means it is easier to utilise
the ITC-2019 data sets for testing. The modelling
of teachers and instructors is also done in a fash-
ion similar to the ITC-2019 competition where we
ensure that a staff member can attend some list
of classes without any scheduling issues (no over-
laps/sufficient travel time). These lists of classes
are another input to the model. This is adopted
here for the same reasons we adopt the module
structure.

Modules at UK universities are either compul-
sory or optional (elective). Compulsory modules
are those that students are required to take, and
elective modules are ones that the student can
choose. Table 2 shows that several models in the
literature also include this feature. In the prob-
lem described here, students are assigned to their
compulsory modules as a hard constraint and the
number of elective modules that can be attended
is maximised. The total number of modules that
a student attends is capped at a fixed number.

To summarise, we have designed a variant of
the UCTTP that includes hybrid teaching. This
variant contains objectives and constraints often
referred to as “essential constraints” (Sørensen
and Dahms, 2014; Aziz and Aizam, 2018; Rudová
et al., 2011) that have been modified to explicitly
include hybrid teaching.

The model is designed this way to maintain
focus on the novel aspect of modelling hybrid
teaching explicitly whilst including key elements
of a typical UCTTP formulation for these novel
features to interact with.

Before providing the mathematical formula-
tion of the problem, it is important to note that
there are some important university features not
included in this model that are included in other
models such as the model described by the ITC-
2019 competition (Müller et al., 2018). In that
model description, there are “distribution con-
straints” that enforce rules on how classes should
be distributed in the schedule (for example, ensur-
ing certain groups of classes happen on different
days or in the same room). These are not included
in this model but could be modelled using the

notation provided in this paper to bring the prob-
lem even closer to the real-life problem (see Holm
et al., 2022).

4 Mathematical formulation

Before detailing the mathematical formulation
specific, terminology and sets are introduced to
make the presentation of the model more effi-
cient. Firstly, the main variables are defined. Sec-
ondly, the objectives to be optimised are defined.
Finally, it is explained how these objectives are
constrained.

4.1 Terminology and notation

Timeslots and timesets

In this model, it is assumed that the university
term is split into equal lengths of time called
timeslots, and a timeset is defined as a subset
of these timeslots. This allows for complicated
arrangements to be described. For example, an
arrangement where a class occurs every other week
of term and starts at 9:30 on Mondays can be
described by a single timeset. We say that two
timesets overlap if the intersection of these sets
is non-empty. We define the time between two
timesets as the minimum number of timeslots
between any two timeslots. Figure 1 illustrates
these definitions.

Set definitions

The following list outlines the definitions of the
sets that are used in the mathematical formula-
tion of the model. In a slight abuse of notation,
we use the set G as a placeholder for another set
that would be a subset of some larger set. This is
to streamline some of the definitions by avoiding
repetition.

S: Set of students.
H: Set of teaching staff.
C: Set of classes.
K: Set of modules.
L: Set of timeslots.
T : Set of timesets.
R: Set of spaces where classes can occur.

Ks: Set of modules requested by student s ∈ S.
Ks ⊆ K.

Kcore
s : Set of compulsory modules student s ∈ S

is required to attend. Kcore
s ⊆ K.
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Timeset 1 

Timeset 2 

Timeset 3 

1     2    3    4     5    6    7     8    9   10 

Timeslots 

Fig. 1 An illustration of a situation where there are ten timeslots and three timesets. The arrows show the “gaps” between
the timesets one and two, with the minimum distance “between” the timesets being one timeslot. The intersection of
timesets one and three is the set containing timeslots one and two, this means that timesets one and three overlap

Kelec
s : Set of elective modules student s ∈ S

would like to attend. Kelec
s ⊆ K.

Sk: Set of students requesting module k ∈ K.
Sk ⊆ S.

Ru
r : Set of timeslots when room r ∈ R is unavail-

able. Ru
r ⊆ L.

Rc: Set of spaces that are suitable for class c ∈ C
to use. Rc ⊆ R.

Tc: Set of timesets that are suitable for class c ∈
C to use. Tc ⊆ T .

RG: Let G ⊆ C. The set RG is defined as RG :=
∩c∈GRc.

CG: Let G ⊆ C. The set CG is defined as CG :=
{(c1, c2) ∈ G×G : c1 ̸= c2}.

RC
r : Let r ∈ R. The set RC

r is defined as RC
r :=

{c ∈ C : r ∈ Rc}.
Ol: Let l ∈ L. The set Ol is defined as Ol :=

{t ∈ T : l ∈ t}.
Fk: Set of configurations for module k ∈ K.
Pf,k: Set of subparts for configuration f ∈ Fk,

where k ∈ K.
Cp,f,k: Set of classes for subpart p ∈ Pf,k, where

f ∈ Fk, where k ∈ K.
Cs: Set of classes that student s ∈ S could take

if offered. In particular, Cs = ∪k∈Ks ∪f∈Fk

∪p∈Pf,k
Cp,f,k.

Ch: Set of classes that teaching staff member h ∈
H must attend if offered.

Travel time

Define A as the matrix with entries that approx-
imate the travel time between pairs of rooms. In
particular, for two rooms r1, r2 ∈ R, the entry
Ar1,r2 is equal to the number of timeslots that it
takes to travel from r1 to r2. It is assumed that A
is symmetric and that Ar,r = 0.

Hybrid teaching elements

Physical rooms have a finite capacity. For a room
r ∈ R, the capacity is denoted as cap(r). The
online space is modelled as a room that is always
available and can host multiple classes at the
same time. The capacity of this space is consid-
ered unlimited, that is, cap(r∗) = ∞. This space
will be denoted as r∗ and a class c ∈ C can be
held online if and only if r∗ ∈ Rc. For pedagogi-
cal reasons, classes still have a subscription limit,
denoted as sub(c) for c ∈ C. This subscription
limit is the maximum number of students who can
take a particular class.

It is assumed that students can move instantly
from an online class to an online class and that it
is a fixed number of timeslots d∗ ∈ Z+

0 to travel
from an online class to an in-person class and vice-
versa. In particular, Ar∗,r∗ = 0 and Ar∗,r = d∗ for
all r ∈ R \ {r∗}.

Classes are allowed to be taught in a hybrid
format provided that the physical room has the
proper equipment. Define Rh as a subset of R con-
taining all of the locations that allow for hybrid
teaching. For a class to be a hybrid class then not
only does the room assigned to the class need to
be in Rh but the online portion of the class needs
to be scheduled for the same time as the in-person
class. For consistency, r∗ ∈ Rh.

Different students prefer different modes of
teaching, or may not have a preference. Define πs

as the preference of student s ∈ S. πs is equal to
one if the student prefers in-person teaching, neg-
ative one if the student prefers online teaching,
and zero if they have no preference towards either
format.
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Module restrictions

Students should not take an excessive number of
modules for both financial and pedagogical rea-
sons. We introduce a parameter kcaps that indicates
the maximum number of modules student s ∈ S
is allowed to take.

Parameter arrays

To streamline the discussion of constraints in
the timetabling, the notion of a parameter array
is introduced. These are fully determined by
the input data and record various relationships
between timesets and rooms. The following list
provides the definitions of these parameter arrays.
D0: A matrix where D0[r, t] is equal to one if

room r is unavailable at some point during
timeset t, zero otherwise.

D1: A matrix where D1[t1, t2] is equal to one if
t1 overlaps t2, zero otherwise.

D2: An array where D2[r1, r2, t1, t2] is equal to
one if there is not enough time between t1
and t2 to travel between r1 and r2, zero
otherwise.

4.2 Variables

xc,r,t: Binary decision variable indicating if class
c ∈ C is held in space r ∈ R during timeset
t ∈ T .

yRc,r: Binary decision variable indicating if class
c ∈ C is held in space r ∈ R.

yTc,t: Binary decision variable indicating if class
c ∈ C is held during timeset t ∈ T .

gk: Binary decision variable indicating if module
k ∈ K is offered.

qk,f : Binary decision variable indicating if con-
figuration f ∈ Fk of module k ∈ K is
offered.

wk,f,p: Binary decision variable indicating if sub-
part p ∈ Pf,k in configuration f ∈ Fk of
module k ∈ K is offered.

as,k,f,p,c: Binary decision variable indicating if
student s ∈ S is assigned class c ∈ Cp,f,k,
where p ∈ Pf,k, where f ∈ Fk, where k ∈ K.

αonl
s,c : Binary decision variable indicating if stu-

dent s ∈ S is assigned to the online version
of class c ∈ C.

αinp
s,c : Binary decision variable indicating if stu-

dent s ∈ S is assigned to the in-person
version of class c ∈ C.

bs,k,f,p: Binary decision variable indicating if stu-
dent s ∈ S is assigned some class in subpart
p ∈ Pf,k, where f ∈ Fk, where k ∈ K.

ms,k,f : Binary decision variable indicating if stu-
dent s ∈ S is assigned to configuration f ∈
Fk, where k ∈ K.

ns,k: Binary decision variable indicating if stu-
dent s ∈ S is assigned to module k ∈
K.

βonl
s,c,t: Binary decision variable indicating if stu-

dent s ∈ S attends class c ∈ C during
timeset t ∈ T in the online format.

βinp
s,c,t: Binary decision variable indicating if stu-

dent s ∈ S attends class c ∈ C during
timeset t ∈ T in the in-person format.

γs,c,r,t: Binary decision variable indicating if stu-
dent s ∈ S attends class c ∈ C in room r ∈ R
during timeset t ∈ T .

τs,c: Binary decision variable indicating if stu-
dent s ∈ S is not attending class c ∈ C in
their preferred mode.

hs,c1,c2 : Binary decision variable indicating if
there is a scheduling issue with assigning
student s to c1 ∈ C and c2 ∈ C.

4.3 Objectives

Maximise the total number of elective
module requests met

Individual students provide a list of elective mod-
ules they would like to attend. The aim is to assign
students to as many of these modules as possible.
This model considers the total requests:

max z1 =
∑
s∈S

∑
k∈Kelec

s

ns,k. (1)

The model does not force the timetable to be
complete (feature 22 in Table 2) so maximising
this objective may result in classes with no time
or room assignment.

Minimise total number of deviations
from mode requests

Students may provide a preference for either the
online format or the in-person format. The aim
is to align with this preference as much as possi-
ble. This model considers the total deviation from
mode requests (the amount of mode requests not
met):



Springer Nature 2021 LATEX template

14

min z2 =
∑
s∈S

∑
c∈C

τs,c. (2)

Minimise the total number of student
scheduling issues

There are two scheduling issues considered in this
model. The first is where a student is assigned to
two classes that overlap in time. The second is
where a student is assigned to two classes that are
placed in space and time in such a way that it is
impossible to travel between them without leaving
one class early or arriving at the other late. This
model considers the total number of scheduling
issues in the timetable:

min z3 =
∑
s∈S

∑
c1∈C

∑
c2∈C

hs,c1,c2 . (3)

One advantage of having the number of
scheduling issues as a soft constraint instead of
a hard constraint is that the model is less likely
to become infeasible. Another advantage is that
this objective gives another measure of solution
quality (Barnhart et al., 2022). In a decision-
making context, knowing the number of issues is
more informative than infeasibility (Sørensen and
Dahms, 2014).

There are often so many students at a univer-
sity that achieving no issues is nearly impossible.
The current practice at universities is for students
to meet with a staff member and discuss com-
promising on module choice to resolve scheduling
issues.

4.4 Constraints

In this section, the hard constraints of the model
are outlined.

Linking constraints for resource
assignment

It is convenient for the description of the model to
be able to switch between the collection of yRc,r and

yTc,t variables, and the collection of xc,r,t variables.
The linking constraints are as follows:

yRc,r =
∑
t∈T

xc,r,t, ∀r ∈ R, c ∈ C, (4)

yTc,t ≤
∑
r∈R

xc,r,t, ∀t ∈ T, c ∈ C, (5)

∑
r∈R

xc,r,t ≤ 2yTc,t, ∀t ∈ T, c ∈ C. (6)

Constraints 4 state that if yRc,r indicates that
a class c is happening in a room r then this is if
and only if exactly one of the xc,r,t variables indi-
cates the same arrangement. Constraints 5 and
Constraints 6 combined achieve a similar outcome
for time arrangements. Two sets of constraints are
needed because the summation in Constraints 5
and Constraints 6 can be equal to two due to how
hybrid teaching is modelled in this paper.

Classes can only be assigned compatible
teaching spaces and timesets

For each c ∈ C add the following constraints:∑
r∈R

xc,r,t = 0, ∀t ∈ T \ Tc, (7)

∑
t∈T

xc,r,t = 0, ∀r ∈ R \Rc. (8)

Classes should not happen in a teaching
space when that space is not available∑

t∈T

∑
r∈R

D0[r, t]xc,r,t = 0, ∀c ∈ C. (9)

Classes can only be assigned at most
one timeset∑

t∈T

yTc,t ≤ 1, ∀c ∈ C. (10)

Classes can only be assigned a
maximum of two teaching spaces∑

r∈R\{r∗}

yRc,r ≤ 1, ∀c ∈ C, (11)

∑
r∈R

yRc,r ≤ 2, ∀c ∈ C. (12)

Constraints 11 ensure that a class can only
be held in at most one in-person teaching space.
Constraints 11 and Constraints 12 combined then
ensure that if there are two teaching spaces
assigned, exactly one will be held in person and
the other will be held online.
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Classes can happen online and
in-person if the physical room is
appropriate

yRc,r∗ ≤ 1−
∑

r∈R\Rh

yRc,r, ∀c ∈ C. (13)

Constraints 13 ensure that when a class is
assigned an in-person teaching space not capable
of hybrid teaching then it is impossible for the
class to also be assigned the online teaching space
and vice versa.

In-person classes should not use the
same teaching space at the same time∑

c∈Rc
r

∑
t∈Ol

xc,r,t ≤ 1, ∀r ∈ R \ {r∗}, l ∈ L. (14)

Module is offered if at least one
configuration is offered

gk|Fk|≥
∑
f∈Fk

qk,f , ∀k ∈ K, (15)

gk ≤
∑
f∈Fk

qk,f , ∀k ∈ K. (16)

Configuration is offered if and only if
every subpart is offered

qk,f |Pf,k| =
∑

p∈Pf,k

wk,f,p, ∀f ∈ Fk, k ∈ K. (17)

Subpart is offered if at least one class
in the subpart is offered

wk,f,p|Cp,f,k||R||T | ≥
∑

c∈Cp,f,k

∑
r∈R

∑
t∈T

xc,r,t,

∀p ∈ Pf,k, f ∈ Fk, k ∈ K, (18)

wk,f,p ≤
∑

c∈Cp,f,k

∑
r∈R

∑
t∈T

xc,r,t,

∀p ∈ Pf,k, f ∈ Fk, k ∈ K. (19)

Staff must be able to attend classes
they can teach

For each staff member h ∈ H, let G = Ch. For
each (c1, c2) ∈ CG add the following constraints:

D2[r1, r2, t1, t2](xc1,r1,t1 + xc2,r2,t2) ≤ 1,

∀t1 ∈ Tc1 , t2 ∈ Tc2 , r1 ∈ Rc1 , r2 ∈ Rc2 . (20)

Student does not attend a module they
do not request

ns,k ≤ 0, ∀k ∈ K \Ks, s ∈ S. (21)

Student does not attend a module that
is not offered

ns,k ≤ gk, ∀k ∈ K, s ∈ S. (22)

Student must attend all compulsory
modules

ns,k = 1, ∀k ∈ Kcore
s , s ∈ S. (23)

Student does not attend too many
modules ∑

k∈K

ns,k ≤ kcaps , ∀s ∈ S. (24)

Student does not attend a class that is
not offered

αinp
s,c ≤

∑
t∈T

∑
r∈R\{r∗}

xc,r,t, ∀c ∈ C, s ∈ S, (25)

αonl
s,c ≤

∑
t∈T

xc,r∗,t, ∀c ∈ C, s ∈ S. (26)

Student attends a module if they
attend a configuration for that module∑

f∈Fk

ms,k,f = ns,k, ∀k ∈ K, s ∈ S. (27)

Student assigned configuration if they
attend a class from each subpart

∑
p∈Pf,k

bs,k,f,p = |Pf,k|ms,k,f ,

∀f ∈ Fk, k ∈ K, s ∈ S. (28)

Student has at most one class from a
subpart

∑
c∈Cp,f,k

as,k,f,p,c = bs,k,f,p,

∀p ∈ Pf,k, f ∈ Fk, k ∈ K, s ∈ S. (29)
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Student attends either the online
session or the in-person session

as,k,f,p,c = αonl
s,c + αinp

s,c ,

∀c ∈ Cp,f,k, p ∈ Pf,k, f ∈ Fk, k ∈ K, s ∈ S.
(30)

Physical room capacities cannot be
exceeded

∑
s∈Sk

αinp
s,c ≤

∑
r∈Rc\{r∗}

cap(r)yRc,r,

∀c ∈ Cp,f,k, p ∈ Pf,k, f ∈ Fk, k ∈ K. (31)

Class subscription capacities cannot be
exceeded

∑
s∈Sk

(αinp
s,c + αonl

s,c ) ≤ sub(c),

∀c ∈ Cp,f,k, p ∈ Pf,k, f ∈ Fk, k ∈ K. (32)

Parent-child classes

It is often the case that some classes are prereq-
uisites for other classes. For example, to attend a
workshop in a module the student should attend
the lecture for that module also. Given a student
s ∈ S, for every parent/child class pair (with the
child class denoted as cch and the parent denoted
as cpar) add the following constraint:

αinp
s,cch

+ αonl
s,cch

≤ αinp
s,cpar

+ αonl
s,cpar

. (33)

Mode requests

The τ variables need to be linked to the allocation
of students.

τs,c ≥ πs

(
αonl
s,c − αinp

s,c

)
, ∀s ∈ S, c ∈ C, (34)

τs,c ≤ αonl
s,c + αinp

s,c , ∀s ∈ S, c ∈ C. (35)

Constraints 34 force the value to one if the
preference is not met and Constraints 35 force the
value to zero if the class is not attended by that
student.

Detect if a student has an overlapping
class

For the objective z3 described in Equation 3 to
correctly detect overlaps, the hs,c1,c2 variables
need to be linked to the assignment of student
s ∈ S. This is done by first adding the following
constraints:

αinp
s,c × yTc,t = βinp

s,c,t, ∀s ∈ S, c ∈ C, t ∈ T, (36)

αonl
s,c × yTc,t = βonl

s,c,t, ∀s ∈ S, c ∈ C, t ∈ T. (37)

Next, for every student s ∈ S and each
(c1, c2) ∈ CCs , where CCs is the pair-wise combi-
nations of classes that the student can take, the
following constraints are added:

D1[t1, t2](β
onl
s,c1,t1 + βinp

s,c1,t1 + βonl
s,c2,t2 + βinp

s,c2,t2)

≤ 1 + hs,c1,c2 , ∀t1 ∈ Tc1 , t2 ∈ Tc2 . (38)

Constraints 36 to 38 ensure that hs,c1,c2 is
equal to one if c1 and c2 overlap in time and stu-
dent s is assigned to both of classes. Constraints 36
and 37 are non-linear but this can be resolved by
replacing them with the following constraints:

βinp
s,c,t ≤ αinp

s,c , ∀s ∈ S, c ∈ C, t ∈ T, (39)

βonl
s,c,t ≤ αonl

s,c , ∀s ∈ S, c ∈ C, t ∈ T, (40)

βinp
s,c,t ≤ yTc,t, ∀s ∈ S, c ∈ C, t ∈ T, (41)

βonl
s,c,t ≤ yTc,t, ∀s ∈ S, c ∈ C, t ∈ T, (42)

βinp
s,c,t ≥ αinp

s,c +yTc,t−1, ∀s ∈ S, c ∈ C, t ∈ T, (43)

βonl
s,c,t ≥ αonl

s,c +yTc,t−1, ∀s ∈ S, c ∈ C, t ∈ T. (44)

Detect if a student has enough travel
time between classes

For the objective z3 described in Equation 3 to
correctly detect travel time issues, the hs,c1,c2 vari-
ables again need to be linked to the assignment
of student s ∈ S. This is done in a similar way
to overlap detection and involves first adding the
following constraints:

βinp
s,c,t × yRc,r = γs,c,r,t,
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∀s ∈ S, c ∈ C, t ∈ T, r ∈ R \ {r∗}, (45)

βonl
s,c,t × yRc,r∗ = γs,c,r∗,t,

∀s ∈ S, c ∈ C, t ∈ T. (46)

Then, for every student s ∈ S and each
(c1, c2) ∈ CCs

, where CCs
is the pair-wise combi-

nations of classes that the student can take, add
the following constraints:

D2[r1, r2, t1, t2](γs,c1,r1,t1 + γs,c2,r2,t2)

≤ 1 + hs,c1,c2 ,

∀t1 ∈ Tc1 , t2 ∈ Tc2 , r1 ∈ Rc1 , r2 ∈ Rc2 . (47)

These constraints ensure that hs,c1,c2 is equal
to one if student s does not have enough time to
travel between classes c1 and c2. Once again these
are non-linear constraints so Constraints 45 and
Constraints 46 are replaced with the following:

γs,c,r,t ≤ βinp
s,c,t,

∀s ∈ S, c ∈ C, t ∈ T, r ∈ R \ {r∗}, (48)

γs,c,r,t ≤ yRc,r,

∀s ∈ S, c ∈ C, t ∈ T, r ∈ R \ {r∗}, (49)

γs,c,r,t ≥ βinp
s,c,t + yRc,r − 1,

∀s ∈ S, c ∈ C, t ∈ T, r ∈ R \ {r∗}, (50)

γs,c,r∗,t ≤ βonl
s,c,t, ∀s ∈ S, c ∈ C, t ∈ T, (51)

γs,c,r∗,t ≤ yRc,r∗ , ∀s ∈ S, c ∈ C, t ∈ T, (52)

γs,c,r∗,t ≥ βonl
s,c,t + yRc,r∗ − 1,

∀s ∈ S, c ∈ C, t ∈ T. (53)

5 Solution method

The solution method used in this paper involves
a preprocessing stage and then a stage that solves
the three objectives in a certain order.

5.1 Preprocessing steps

The full mathematical formulation includes some
variables and constraints that are not necessary
and therefore can be removed from the model. In
this section, some of the steps taken to remove
redundant variables and constraints are outlined.
This does not necessarily remove all redundancies
and whilst more sophisticated reduction meth-
ods exist (see Holm et al., 2022) these are not
employed in this paper.

Variables that can be removed

The first collection of variables that can be omit-
ted from the model includes xc,r,t variables for
each c ∈ C where either t ∈ T \ Tc or r ∈ R \ Rc.
This is because Constraints 7 and 8 force these
variables to be zero. Similarly, if D0[r, t] = 1 for
some pairing (r, t) where t ∈ T and r ∈ R then for
all classes c ∈ C it is the case that Constraint 9
is forcing xc,r,t = 0 and therefore these variables
can be removed from the model.

The second collection of variables that can be
omitted are from the student sectioning part of the
model. ns,k = 0 for s ∈ S and k ∈ K \Ks there-
fore these variables can be removed. Furthermore,
any variable with k ∈ K \Ks in the indexing for
a given student s ∈ S can be removed as these
will be forced to zero. Finally, any variable with
c ∈ Cp,f,k for k ∈ K \Ks in the indexing can be
removed. Essentially what is meant by this is that
any variable relating to a course a student does
not want to attend is removed from the model.

Overlap and travel time constraints

For any two timesets t1 ∈ T and t2 ∈ T , it is
always true that D1[t1, t2] ≤ D2[r1, r2, t1, t2] for
any choice of r1 and r2 from the set R. Therefore if
two timesets that overlap are identified and Con-
straints 38 to 44 are included in the model there is
no need to include Constraints 47 to 53 for those
two timesets. There is a similar process for Con-
straints 20 where if two timesets overlap there is
no need to include the constraint for every room
combination. We only need to constrain the time
assignment using the yT variables in this case.

Furthermore, when considering a pair of
classes c1 and c2, it is possible that for a
pair of timesets (t1, t2) ∈ Tc1 × Tc2 we have
that D2[r1, r2, t1, t2] = 0 for any pair of rooms
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(r1, r2) ∈ Rc1×Rc2 . This means there is no need to
include Constraints 47 to 53 for this timeset pair
(for this pair of classes). These two checks help
reduce the total number of constraints, especially
if classes have a large number of teaching spaces
they could be assigned to.

A final check that is employed is we do not
check for scheduling issues for pairs of classes that
we know cannot be attended together. For exam-
ple, students can only participate in one class from
a subpart (Constraint 29), therefore, we will never
have problems with a pair of classes from the same
subpart. The impact of this preprocessing step is
dependent on the course and module structure
assumed.

5.2 Objective ordering and solving

The solution method involves solving three sin-
gle objective problems sequentially. The objectives
are ordered based on importance. One such order-
ing is as follows:

1. Maximise the total number of elective module
requests met (z1).

2. Minimise the total number of deviations from
mode requests (z2).

3. Minimise the total number of student schedul-
ing issues (z3).

In this case, the approach would be to first
maximise z1 using a commercial solver. Denote the
value of this solution as z∗1 . The constraint z1 = z∗1
is added and the model is solved to maximise z2.
Similarly, denote the value of this solution as z∗2 .
We add the constraint z2 = z∗2 to the model and
minimise z3.

6 Computational experiments

In this section, the experimental data used to test
the model is described and computational exper-
iments are performed to demonstrate the use of
the model. All experiments were completed on an
internal computing node running Ubuntu 22.04.1
LTS with an Intel Xeon Gold 6348 CPU running
at 2.60GHz and 528GB of RAM. The model was
implemented in Python 3.9.16 and solutions were
found using Gurobi Optimizer version 10.0.2.

6.1 Experimental data

The experimental data has been taken from the
ITC-2019 competition (Müller et al., 2018). These
datasets are based on data taken from real-world
universities. These provide the model with most
of the information needed. However, since these
datasets do not explicitly consider the online
space, there are features of the model presented
in this paper that require specifying for each
experiment. This includes:

• The value of d∗ in the matrix A.
• The value of πs for each student s ∈ S.
• The value of kcaps for each student s ∈ S.
• The set Rh that identifies which physical rooms
are suitable for hybrid teaching.

In our experiments, we assume that d∗ is one
and a half times bigger than the largest distance
between physical rooms. We chose this number as
it roughly estimates the travel time from student
accommodation to campus for some universities in
the UK we are familiar with. In practice, this value
will vary depending on the university. Setting
the distance to this value also makes switching
between modes undesirable.

To align the data with the motivation for this
model, we are also creating a shortage of capacity
in physical rooms. This shortage reflects a situa-
tion similar to that of the COVID-19 pandemic.
Barnhart et al. (2022) quoted that during this
period they had a fourfold reduction in physical
space on campus and therefore we are reducing
the capacity of each room in the datasets by
75%. Applying this reduction to the four instances
means that room capacity is the limiting factor to
the total in-person attendance.

It is also assumed that every student has one
of three preferences: online teaching, in-person
teaching or no preference (πs equal to −1, 1 or
0 respectively). A systematic way of modifying
the data is applied. In the ITC-2019 data, each
student has an “ID” number. If a student’s ID
number is a multiple of three, they prefer the
online mode. If the remainder after dividing their
ID number by three is two, they have no pref-
erence. All other students prefer the in-person
mode.

In the ITC-2019 competition, students are
assigned to every module they request. This is



Springer Nature 2021 LATEX template

19

equivalent to treating every module as compul-
sory. To demonstrate the objective of maximising
the number of elective module requests met, we
assume in our experiments that all modules are
elective. This means there is no requirement to
assign a student to any of the modules they
request. The value of kcaps for each s ∈ S is the
length of the list of requests for that student.

Each “SameAttendee” distribution constraint
used to model staff in the ITC-2019 problem has
an associated list of classes (see Müller et al.,
2018). The class lists from the required distribu-
tions of this type in the data are used as part of our
staff constraints. In particular, each distribution
constraint in the data is a staff member h ∈ H and
the class list forms the set Ch used in Constraints
20.

Finally, we need to specify the set Rh. It is
assumed that a class can only happen in the
hybrid mode if the physical room assigned to it
has a capacity of 30 or more people. In particular,
if cap(r) ≥ 30 for r ∈ R then r ∈ Rh. The assump-
tion is based on the observation that only the
larger lecture halls at universities have the correct
audio-visual equipment for hybrid teaching.

The four ITC-2019 instances used in this paper
are from various stages of the competition and
are currently archived on the competition website.
Table 4 records the name of each instance and
the critical features of that instance. To reduce
the size of the problem, a subset of students from
each instance is used in the experiment. This is
defined by the ID of the first student in the subset
and how many students are taken after that stu-
dent. For example, with the instance mary-fal18,
Table 4 says that the “Start” is equal to 600 and
“Count” is equal to 400 meaning only students 600
to 999 are considered.

Instance one: wbg-fal10

It is possible to solve any ordering of objectives for
wbg-fal10 as it is a small instance. Table 5 provides
the objective values for the six possible orderings.
It can be seen that only z1 (the number of elec-
tive module requests met) and z2 (the number
of mode request deviations) influence each other.
Table 6 shows that lexicographically optimal solu-
tions for this instance either meet all the student
mode preferences or offer all requested modules.

Instance two: pu-cs-fal07

In the instance pu-cs-fal07, 1000 students are
considered. Like wbg-fal10, no student conflicts
arise in this instance and the only objectives that
appear to influence each other are z1 and z2. It can
be seen from Table 5 that the lexicographically
optimal solutions have one of two objective values.
Looking at the class attendance, we see that the
ratio of in-person to online attendance is about 1:2
suggesting that when students have no preference
for a mode they get placed into the online mode.

Instance three: muni-fsps-spr17

Only 100 students from muni-fsps-spr17 are used,
however, each student attends nearly eight times
the number of classes on average than in pu-cs-
fal07. When z1 is prioritised over z2, there is a
larger increase in z2 than in pu-cs-fal07. This sug-
gests a stronger link between the two objectives
in this instance than in pu-cs-fal07. There is some
relationship between z2 and z3 also.

Instance four: mary-fal18

The mary-fal18 instance considers 400 students.
Table 5 shows that the lexicographically opti-
mal solutions have one of five objective values
with only six possible orderings. That makes this
instance a good instance to demonstrate how
objective ordering can influence the solution.

Orderings prioritising z1 lead to solutions with
the maximum amount of module requests met.
The best possible values of z2 and z3 can be
attained if we optimise those first (in either order),
however when z1 is optimised before one or both
of these objectives this cannot be done. This
shows that z1 influences objectives directly and
influences relations between objectives (compare
orderings z1, z2, z3 with z1, z3, z2).

Figure 3 shows that if matching the mode
preference (z2) is prioritised over module requests
(z1) then fewer requests can be met. Figure 2
shows clearly that prioritising z3 over z1 removes
conflicts but also shows that matching students’
mode requests can reduce the number of conflicts
(likely due to its direct influence on the num-
ber of modules attended by students indicated by
Figure 3).
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Table 4 Instances from the ITC-2019 with their key features. “Start” and “Count” indicate the subset of students used
in the experiment. Column |Rh \ {r∗}| is based on our assumptions about hybrid rooms

Instance |S| |K| |C| |T | |R| |Rh \ {r∗}| Start Count

wbg-fal10 19 21 150 154 8 0 1 19
pu-cs-fal07 2002 44 174 182 14 4 1000 1000
muni-fsps-spr17 865 226 561 1953 45 40 1 100
mary-fal18 5051 540 951 503 94 35 600 400

Table 5 Objective values for each instance and their six potential objective orderings. z4 is the number of students who
switch between online and in-person classes twice or more on the same day (measured using the found solution, not
optimised)

Objective Classes attended Switch

Ordering z1 z2 z3 Total In-person Online z4

w
b
g-
fa
l1
0

z1,z2,z3 97 43 0 199 27 172 5
z1,z3,z2 97 43 0 199 27 172 5
z2,z1,z3 71 0 0 142 16 126 1
z2,z3,z1 71 0 0 142 17 125 2
z3,z1,z2 97 43 0 199 27 172 6
z3,z2,z1 71 0 0 142 17 125 2

p
u
-c
s-
fa
l0
7

z1,z2,z3 1226 11 0 1611 567 1044 0
z1,z3,z2 1226 11 0 1611 596 1015 0
z2,z1,z3 1220 0 0 1599 665 934 0
z2,z3,z1 1220 0 0 1599 641 958 0
z3,z1,z2 1226 11 0 1611 561 1050 0
z3,z2,z1 1220 0 0 1599 641 958 0

m
u
n
i-
fs
p
s-
sp
r1
7 z1,z2,z3 980 106 8 1552 567 985 13

z1,z3,z2 980 114 0 1552 535 1017 11
z2,z1,z3 926 0 0 1366 503 863 15
z2,z3,z1 926 0 0 1366 450 916 8
z3,z1,z2 980 114 0 1552 562 990 11
z3,z2,z1 926 0 0 1366 450 916 8

m
ar
y
-f
al
18

z1,z2,z3 1597 109 36 1613 517 1096 13
z1,z3,z2 1597 111 34 1613 512 1101 13
z2,z1,z3 1498 0 26 1509 536 973 2
z2,z3,z1 1480 0 0 1480 544 936 5
z3,z1,z2 1571 98 0 1571 514 1057 13
z3,z2,z1 1480 0 0 1480 544 936 5

7 Analysis and extensions

We believe that considering the hybrid teach-
ing format presents new challenges that have not
been fully researched in the timetabling literature.
Some of these challenges are discussed here.

7.1 Impact of including hybrid
teaching

From Table 5, it can be seen that many classes
are attended online. This demonstrates how well
the model presented in this paper satisfies the
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Table 6 Key metrics for individual students in tabular form. “% Electives” is the percentage of elective modules a
student is assigned from their list. “# Conflicts” represents the number of scheduling issues a student has. “% Mode” is
the percentage of classes a student is assigned that is in their preferred mode

% Electives # Conflicts % Mode

Ordering Max. Min. Avg. Max. Min. Avg. Max. Min. Avg.

w
b
g-
fa
l1
0

z1,z2,z3 100 100 100.00 0 0 0.00 100 25 77.42
z1,z3,z2 100 100 100.00 0 0 0.00 100 30.77 77.93
z2,z1,z3 100 0 73.51 0 0 0.00 100 100 100.00
z2,z3,z1 100 0 73.51 0 0 0.00 100 100 100.00
z3,z1,z2 100 100 100.00 0 0 0.00 100 25 77.90
z3,z2,z1 100 0 73.51 0 0 0.00 100 100 100.00

p
u
-c
s-
fa
l0
7

z1,z2,z3 100 100 100.00 0 0 0.00 100 0 99.66
z1,z3,z2 100 100 100.00 0 0 0.00 100 0 99.66
z2,z1,z3 100 0 99.67 0 0 0.00 100 100 100.00
z2,z3,z1 100 50 99.70 0 0 0.00 100 100 100.00
z3,z1,z2 100 100 100.00 0 0 0.00 100 0 99.66
z3,z2,z1 100 50 99.70 0 0 0.00 100 100 100.00

m
u
n
i-
fs
p
s-
sp
r1
7 z1,z2,z3 100 100 100.00 1 0 0.08 100 56.52 94.97

z1,z3,z2 100 100 100.00 0 0 0.00 100 52.17 94.62
z2,z1,z3 100 73.33 95.75 0 0 0.00 100 100 100.00
z2,z3,z1 100 73.33 95.75 0 0 0.00 100 100 100.00
z3,z1,z2 100 100 100.00 0 0 0.00 100 52.17 94.62
z3,z2,z1 100 73.33 95.75 0 0 0.00 100 100 100.00

m
a
ry
-f
a
l1
8

z1,z2,z3 100 100 100.00 6 0 0.09 100 0 94.62
z1,z3,z2 100 100 100.00 6 0 0.09 100 0 94.54
z2,z1,z3 100 0 95.08 6 0 0.07 100 100 100.00
z2,z3,z1 100 0 94.36 0 0 0.00 100 100 100.00
z3,z1,z2 100 66.67 98.83 0 0 0.00 100 0 94.96
z3,z2,z1 100 0 94.36 0 0 0.00 100 100 100.00

mode preferences. By construction, one-third of
the student population in the instances preferred
in-person teaching and the other two-thirds either
had no preference or preferred online teaching.
This is roughly represented in the ratio of classes
attended in-person to classes attended online. The
results in the previous section also suggest that the
model takes advantage of the students who have
no preference and assigns them to the more flexi-
ble and high-capacity online space. This alleviates
pressure on physical resources while delivering the
same amount of teaching. From a modelling point
of view, the inclusion of hybrid teaching adds more
flexibility to the timetabling process because a
purely online timetable is not impacted by travel
times and room capacity in the same way as a

purely in-person timetable. In practice, it would
be up to a practitioner to decide to what extent
the online space should be used.

7.2 Impact of objective ordering

If a university has preconceived thoughts on how
the objectives should be ordered, then this model
can cater to those preferences. This model can also
be used to gain more information about the prob-
lem. Trying different orders of objectives can be
used to gain insight into how and to what extent
the objectives influence each other.

One example is that in the instance mary-
fal18. It was identified here that different orderings
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Count of students with a certain number of conflicts (mary−fal18)
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Fig. 2 Count of students who experience one, two or three plus conflicts with their timetable. The majority of students
do not experience any conflicts therefore the zero bar is omitted

typically resulted in differing solutions. A univer-
sity may have an idea of an objective order they
want but find that a different ordering is better
suited to their needs.

Table 5 shows that differences in the solu-
tions generated by different orderings might be
very different or only have subtle differences. This

demonstrates that whilst the ordering of objec-
tives does impact the difference in solutions, it
seems that the extent of the difference is unique
for each instance.
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Count of students who attend a percent of their classes (mary−fal18)
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Fig. 3 Count of students who have a certain percentage of their classes met. They are aggregated into ranges so that the
bars are an appropriate size. The [90, 100] range is omitted but contains the remaining students

7.3 Model extensions

Compulsory modules and credit loads

Constraints 23 describe compulsory modules. The
model becomes infeasible if a student cannot be
offered a mandatory module. This is not a use-
ful finding in practice as universities ultimately
need a timetable (Sørensen and Dahms, 2014).

One approach would be to relax the constraint
and instead attach a high penalty for not ensuring
every student is assigned to their mandatory mod-
ules. Including hybrid teaching offers flexibility
as it facilitates a meaningful two-stage approach
of time assignment and then room assignment
(Barnhart et al., 2022).
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It is common for a student to not only have
mandatory or compulsory modules but to be
required to attend a certain total number of mod-
ules making up a credit load. The model presented
in this paper could be extended so that students
are assigned enough modules to meet a specific
credit load. This would require students to pro-
vide an extended list of elective modules so there
are sufficient options.

Fairness and extended preferences

All the objective functions present in this paper
are aggregate measures so there is no concept of
“fairness” when assigning students. For example,
if two students request two modules then a solu-
tion where one student is assigned to two modules
and the other is assigned to none is equivalent
in objective value to a solution where both stu-
dents are assigned to one module each. The latter
solution is arguably “fairer”.

A similar situation can happen with prefer-
ences. It is possible that a solution could assign
students so that some students attend the mode
they prefer for every class whilst some students
attend none of their classes in their preferred
mode. Currently, each student has a mode prefer-
ence for all modules. The model could be extended
to consider a student’s mode preferences for each
module or even mode preferences for each class.
This extension makes the problem more true to
life but exacerbates the issues surrounding fair
assignments.

Controlling mode of attendance

Universities may want control over what mode
students study in. The mode that students attend
their classes relates heavily to where students
choose to live, how busy the campus is, and how
resources are used on campus at the expense of
the university.

For example, if a university has on-site student
accommodation they may aim to have a min-
imum percentage of classes attended in-person.
A university would do this to make renting this
accommodation a more appealing choice for stu-
dents. On the other hand, a university may wish
to limit the percentage of teaching done in person.
This may be to reduce student density on cam-
pus, either to reduce the spread of infection or to

reduce the amount of energy and money spent on
lighting and heating buildings at the university.

More parameters and constraints would need
to be introduced to model this extension but it is
useful for a practitioner to investigate the effect of
changing these parameters.

Switching between modes of study

A timetable where students and staff make mul-
tiple switches between modes on the same day is
undesirable. Multiple switches could mean more
traffic on and around the university which has
both a health and environmental impact (poten-
tial spread of disease and increase in vehicle
emissions). Whilst many students only attend a
single mode of study or switch between the two
modes only once, Table 5 shows that without
any optimisation there are students that switch
between modes twice or more on the same day.
An extension to this model would be to have an
objective to minimise the number of switches that
each student makes in a working day. However,
research currently underway indicates that solving
this problem is computationally challenging.

7.4 Solution method improvements

As the focus of this paper was the explicit mod-
elling of the hybrid teaching feature of UCTTP,
we utilised an exact approach with small instances
to test the model and demonstrate what happens
to the solution if objectives are reordered. This
method is not an efficient way of solving this prob-
lem and better methods could be applied. For
example, the winner of the ITC-2019 uses a variety
of techniques to find solutions to a similar prob-
lem (Mikkelsen and Holm, 2022). Other methods
applied to similar problems have involved local
searches and simulated annealing (Babaei et al.,
2015). We are currently developing a method to
find solutions for particular orderings more effi-
ciently and a method to explore trade-offs between
objectives. The exact solutions reported in this
work will be used to assess how well this method
performs.

8 Conclusion

Several gaps in the university module timetabling
literature are identified at the beginning of this
paper. To address these gaps, this paper presents
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a formal and mathematical description of a multi-
objective post-enrolment timetabling model with
student sectioning and considerations for hybrid
teaching. The novel feature of this work is the
explicit modelling of hybrid classes, which have
an in-person and online element occurring at
the same time. The assignment of students in
this model is demand-driven. Individual students
request modules they want to take and the model
creates a timetable that tries to satisfy these
requests. It also tries to ensure students attend
their teaching in the mode that they prefer. This is
demonstrated in a series of computational exper-
iments using modified benchmark data from the
2019 International Timetabling Competition. The
modifications are so we can demonstrate the novel
features under a setting where these features
would be most relevant (for example, severely
reduced capacity). In these experiments, an exact
lexicographic solution method is used to show
that solutions to this model depend on both the
input data and the ordering of the objectives. This
observation shows that the model can be used by
practitioners who have different strategic priori-
ties and are based at different universities. Finally,
a list of potential extensions to this model is pre-
sented. Items on this list are starting points for
future research. Exploring these extensions would
benefit both the timetabling community and the
wider large-scale integer optimisation community.
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