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Abstract
The university course timetabling problem is a challenging problem to solve. As universities have evolved, the features of
this problem have changed. One emerging feature is hybrid teaching where classes can be taught online, in-person or a
combination of both in-person and online. This work presents a multi-objective binary programming model that includes
common university timetabling features, identified from the literature, as well as hybrid teaching features. A lexicographic
solution method is outlined and computational experiments using benchmark data are used to demonstrate the key aspects
of the model and explore trade-offs among the objectives considered. The results of these experiments demonstrate that the
model can be used to find demand-driven schedules for universities that include hybrid teaching. They also show how the
model could be used to inform practitioners who are involved in strategic decision-making at universities.

Keywords University timetabling · Hybrid teaching · Binary programming · Multi-objective

1 Introduction

Timetabling for universities is a very challenging problem
and one of the most interesting educational timetabling prob-
lems to research. The interest and challenges arise because
the decisions that need to be made impact many differ-
ent stakeholders and resources. By modelling the university
timetabling problem, we hope to gain insight into some of
the interactions between many stakeholders and types of
resources.

One major factor increasing the difficulty of this prob-
lem is that students have a choice in the degree program
and a choice in the modules that they attend. This means
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the output of the university course timetabling problem
should be a timetable for each student. This issue is exacer-
bated by the fact that universities typically enrol significantly
more students than other types of educational establishments.
Allowing students to choose some of the modules they take
means there is a stronger interdependence in these choices.
Students can interact with each other and thereforemay influ-
ence each other’s choices. One possible consequence of this
inconsistent class sizes.

Teaching spaces at universities aremore diverse than other
educational establishments because they are primarily places
of research for multiple disciplines, with each discipline
requiring specialist equipment and facilities. This means
there are more constraints on how classes are assigned to
teaching spaces. This diversity contributes to a higher dis-
persion of facilities. Teaching spaces of different shapes and
sizes do not fit together as neatly as teaching spaces that
are uniform in size. Therefore, more space is needed for the
university which can increase travel time between classes.
Dispersion of teaching facilities can also be a consequence
of the university layout. Some universities are campus uni-
versities meaning most of the buildings are on a single site,
but some universities are city universities where university-
owned buildings are mixed amongst other buildings. There
can be a mix of the two with some universities spanning
multiple cities and campuses. Travel time between build-
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ings for any layout needs to be considered when timetabling.
Universities also have longer working hours than other edu-
cational establishments meaning a greater number of times
that classes and other meetings can happen, increasing the
scale of the timetabling problem.

An emerging factor that complicates the timetabling pro-
cess is the increasing use of “hybrid teaching”. This is
where a class can be held completely online or in a “hybrid
mode”where some students attend in-person and some attend
online. The inclusion of hybrid teaching means that student
allocation involves deciding what classes a student attends
as well as deciding how they attend these classes. Different
students respond differently to each mode of teaching and
therefore this needs to be accounted for when assigning stu-
dents to classes.

If a timetable is produced that does not address these com-
plexities, then students and staff will be unhappy with the
timetable. Students often pay a lot of money to attend uni-
versity and a timetable that impacts their ability to attend
classes could encourage them to discontinue their studies.
For staff who research at the university, a timetable that does
not allow them enough time to research around teaching or
does not cater to various personal requests could cause them
at worst to leave their position at that university, negatively
impacting the teaching.

Therefore, being able to produce timetables that can
consider the above complexities is imperative to the suc-
cessful operation of a university. At a high level, universities
have strategic goals that they want to achieve (for example,
achieving a high output of novel research). This requires care-
ful management of resources and people which automated
scheduling can help facilitate. The final timetables produced
specify exactly what needs to be done at an operational level
to work towards these goals.

There already exists a significant amount of literature that
addresses various aspects of the university course timetabling
problem. However, to the best of our knowledge, the litera-
ture lacksmodels that explicitly include the emerging issue of
hybrid teaching. This paper aims to close this gap by demon-
strating how hybrid teaching can be incorporated explicitly
into a university timetabling model. This includes specifying
what information needs to be known about the university and
what sort of variables and constraints need to be part of the
mathematical model that produces timetables for students.

The objectives of this paper are to achieve the following:
(i) provide a timetabling model that explicitly incorporates
hybrid teaching, (ii) identify the benefits of including hybrid
teaching in the timetabling model and (iii) discuss how this
model gives rise to several interesting research directions and
how this model could be used in a strategic decision making
context.

The rest of the paper is structured as follows. In Sect. 2,
a review of existing work in the context of university

timetabling is provided. In Sect. 3, a brief description of the
problem to be modelled is given. A mathematical formula-
tion of this problem is given in Sect. 4. The method used to
solve this problem is given in Sect. 5 and this method is used
in Sect. 6 for various computational experiments. Section7
includes a discussion about the results and extensions to the
model. Finally, in Sect. 8 there is a summary of thework done
in this paper.

2 Related work

University timetabling problems have been studied for a long
time with one of the earliest papers in the literature present-
ing amethod for university examination timetabling (Broder,
1964). There are three types of university timetabling prob-
lems: post-enrolment-based timetabling, curriculum-based
timetabling and examination timetabling (Lewis and Thomp-
son, 2015).

The examination timetabling problem is the problem of
assigning examinations to locations and times. Considera-
tions need to be made to ensure that students can attend all
the examinations they need to and to ensure that the loca-
tions have enough capacity for the examinations to take place.
Curriculum-based timetabling is where events (such as lec-
tures and seminars) are grouped to formfixed curriculawhich
are then assigned to times and locations and post-enrolment-
based timetabling is where events are assigned times and
locations with respect to student demand and/or enrolment
data (Lewis and Thompson, 2015).

This paper focuses on a combination of the curriculum-
based andpost-enrolment-based timetablingproblemsknown
as the university course timetabling problem (UCTTP). The
goal of this problem is to assign people to events and these
events to times and locations subject to various constraints
(Babaei et al., 2015). Events are typically grouped into
“courses”, hence the name UCTTP; however, this paper uses
the term “module”. The reason we do this is that universities
in the UK typically use the phrase “course” to describe a pro-
gramme of study that is made up of modules. For example,
an undergraduate mathematics course may contain modules
that cover algebra.

The earliest UCTTP models were graph theoretic mod-
els (de Werra, 1985). The university course timetabling is an
NP-hard problem (Cooper and Kingston, 1996) and there-
fore early mixed integer programming (MIP) models for
timetabling problems (see Badri, 1996) could only be solved
exactly for small instances. As time went on and universities
became bigger and more complex, the demand for sophis-
ticated models and solution methods became greater. Lewis
(2008) and Burke et al. (2012) provide reviews that primarily
cover heuristic and hyper-heuristic algorithms, approaches
that have dominated the field for over two decades. How-
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ever, thanks to improvements in computers and MIP solvers,
matheuristics are the current focus of the timetabling com-
munity (see Mikkelsen and Holm, 2022).

There have been several papers reviewing research on the
UCTTP. Two recent papers that review some of the state-of-
the-art solution methods are Tan et al. (2021) and Chen et
al. (2021). For less recent but more feature-focused reviews
that are useful for understanding the field see Babaei et al.
(2015) and Aziz and Aizam (2018).

2.1 Key timetabling features

In this section, papers are reviewed according to general
model features that are of importance when tackling the
UCTTP. For each paper, a brief description of the paper is
given and what it contributes to the literature is highlighted.
Model features, the modelling approach, and the data used
are summarised for each paper in Tables 1, 2 and 3.

Typical resource allocation

Badri (1996) proposes a binary program to model a depart-
mental assignment problem at the United Arab Emirates
University. This paper, to our knowledge, is the earliest paper
to include constraints similar to the set-packing problem
(Skiena, 2008) which are useful when you need to constrain
choosing a certain number of items selected from a collection
of options. In their model, they penalise using more rooms
than available and not meeting instructor preferences. This
is done using a goal programming approach where there are
penalties for deviations above or below a desired level.

Di Gaspero and Schaerf (2006) use a local search method
to solve the course timetabling problem involving assigning
lectures for courses to periods and rooms. The main purpose
of their paper is to demonstrate their local search method.
By using a simple solution representation, moves between
solutions in the search do not lead to infeasibility. The two
hard constraints maintained between moves are ensuring no
more than one lecture happens in a single room at the same
time and ensuring all lectures in a module are offered. The
quality of the solution is a weighted sum of violations of
soft constraints. The soft constraints include features such as
room capacity and instructor availability. They also include
temporal constraints spreading lectures across several days
and spacing lectures within days to avoid gaps.

Overlapping timeslots and irregular weekly timetables are
allowed in the problem defined by De Causmaecker et al.
(2009). This was to accommodate the structure of teaching
at KaHo Sint-Lieven School of Engineering. A feature not
included in their problem that others such as Badri (1996)
include is the assignment of staff. It is assumed staff already
know what they will teach so constraints are included to
ensure they can attend all events they need to. The solution

method is very similar to Di Gaspero and Schaerf (2006),
using a local search algorithm to find solutions.

Chaudhuri and De (2010) define a timetabling problem
including many of the features seen in the problems dis-
cussed so far. This includes various temporal constraints,
staff preferences and conflicting resource assignments. A
constraint seen in this problem that has not been discussed yet
is ensuring that assignments are “compatible”. For example,
a chemistry class may only be held in a chemistry laboratory
and so the set of compatible rooms for a chemistry class is
the set of all chemistry laboratories at the university. This
notion of compatibility extends to any assignment of events
or people to resources.

The problem described in Aizam and Caccetta (2014) is
a binary program like in Badri (1996). In this paper, they
start by describing a basic model that contains constraints
that they deem necessary for every timetabling problem and
then suggest extra constraints to account for additional fea-
tures that could be included. This is one advantage of using a
binary program formulation. One feature in this model (and
the previously discussed models) that is worth pointing out
is “completeness”. This is where every event is assigned
resources or every student is assigned to every class they
need to be.

An example of a model where completeness is not nec-
essary is given by Méndez-Díaz et al. (2016). There is more
emphasis on the post-enrolment features of the UCTTP. The
objective of their model is to maximise the total weighted
preference for the assignments of students to modules. Due
to student demand driving the timetable, it is not necessary
for all events to be assigned a location and a time. One feature
that causes this uncertainty in whether events are assigned or
not is the structure of modules. InMéndez-Díaz et al. (2016),
modules are composed of one or several commissions, which
are instances of the samemodule. The literature also refers to
this as “configurations” (Müller et al., 2018). If it is known
that all students are assigned to a single commission, then
the events in other commissions do not need to be assigned.

The Integer Linear Program (ILP) described by Fonseca et
al. (2017) covers many of the features described in the mod-
els seen so far. It includes some of the constraints outlined
by Aizam and Caccetta (2014) in their basic model and also
includes constraints described by the eXtendedMarkup Lan-
guage for High School Timetabling (XHSTT) format (Post
et al., 2014). This format is one example of an attempt to
generalise a description of any high school timetabling prob-
lem.

Scheduling issues

One of the earlier discussions surrounding student schedul-
ing issues is given in Carter (2001). This model operates a
“demand driven” approach where students choose modules
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and then a timetable is found to best match these requests.
They use clustering techniques to group students with similar
requests and assign these to sections to minimise expected
conflicts. Then once a timetable is found, the student section-
ing is repeated considering individual student conflicts.

In the model described by Schimmelpfeng and Helber
(2007), room assignment and staff assignment are the most
important features. Rooms should not be assigned to more
than one class at a time or contain classes with an attendance
that exceeds the room capacity. Staff members can not be
assigned to a time when they are not available and other staff
preferences should be respected. These include a variety of
teaching staff requests such as breaks, consecutive or dis-
tributed teaching slots, and a maximum number of teaching
slots. Unlike the timetabling seen in other papers such as
Carter (2001), students are an afterthought.

Gonzalez et al. (2018) create aMIP that schedules courses
for the United States Air Force Academy (USAFA). The
interesting scheduling issue in this problem is that students
who are at the USAFA have work commitments as well as
academic commitments. They utilise a goal programming
approach to meet as many requirements as possible includ-
ingminimising student registration conflicts, where a student
is assigned two modules that conflict. They state that in prac-
tice it is impossible to remove every conflict.

The MIP model described by Holm et al. (2020) was con-
structed to solve the problem designed by the organisers of
the ITC-2019 (Müller et al., 2018). In this problem, stu-
dent conflicts are minimised as part of a weighted objective.
In their follow-up paper, where they describe their graph-
based MIP (Holm et al., 2022), they discuss the importance
of identifying assignments that lead to inevitable conflicts
and assignments that lead to impossible conflicts. This pre-
processing step helps minimise the work that needs to be
performed by the solution method.

Student movement and travel

When dealing with the movement of students, one aspect
(Daskalaki and Birbas, 2005) aim to control is the number
of classroom changeovers. Minimising the number of class-
room changes means that there is less noise and congestion
in spaces on campus. To do this, they name a preferred class-
room for each student group and try to ensure that the group
stays in that classroom and has consecutive sessions in that
room. This is however not a realistic representation of a gen-
eral university as students cannot typically be grouped so
easily and need to be considered as individuals.

Al-YakoobandSherali (2007) dealwith parking and traffic
congestion issues in their paper. This is achieved primarily
by limiting the number of students on campus at any given
time. A hard limit for the whole campus could lead to some
timeslots having a few very crowded departments whilst the

others are empty. This is unfair to the busy departments so
to make this fair they also impose a minimum and maximum
attendance at the department level to distribute congestion
over the entire campus.

Vermuyten et al. (2016) also try to avoid congestion as in
Daskalaki and Birbas (2005), however, their approach does
not try to achieve this by fixing students in one place but by
changing how many students move along various corridors
at a given time. A graph that represents the faculty building
is used so they can optimise the flow of students through
arcs and the resulting travel times. The element they min-
imise overall is the maximum travel time seen in an arc. A
two-stage decomposition is used where most of the sched-
ule is determined in the first stage, and classes and rooms
are swapped around in the second to locally optimise stu-
dent flow. Optimising the schedule and the flow together is
computationally expensive.

Gogos et al. (2022) work with a problem that focuses on
minimising the number of times in aweek that students travel
to university. The motivation is that students who do not
live on campus do not want to spend excessive money on
public transport and want to reduce the risk of catching an
illness from other passengers. They approach this problem
by calculating the minimum number of days a student would
need to attend university and then trying to minimise the
number of excess days the student is on campus. This is
limited as it does not consider the time of travel (certain
times are busier) or if students make multiple journeys in a
single day (multiple campuses).

Scarce resources

The timetabling model in Dammak et al. (2008) includes a
few of the features seen in other papers. One feature relating
to the usage of resources is their aim of maximising the occu-
pancy of classroom seats. Since their paper presents only a
heuristic to produce a feasible solution, this objective is not
explicitly optimised. However, in the construction of the fea-
sible solution, they order the classrooms and student groups
in a non-increasing fashion so that large student groups are
placed in large classrooms.

Lindahl et al. (2018) approach the UCTTP differently.
They break from the operational timetabling problem and
move towards a strategic approach. Three problems are pre-
sented in this paper. The first is the “quality problem” that
is similar to the other papers that produce a timetable that is
highquality by somemeasure.The secondfinds theminimum
number of rooms needed. The third finds the minimum num-
ber of times needed. They solve a collection of bi-objective
models to create solution frontiers that can be used to anal-
yse gain in quality by not using the minimum amount of
resources.
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Barnhart et al. (2022) experience scarce resources due to
the COVID-19 pandemic. This context applied to most if not
all universities at the time. They tackle a term-planning prob-
lem and a timetabling problem within the same paper. The
timetabling problem involves working out when and where
events take place except for modelling purposes classrooms
are bundled into blocks. These blocks can be considered as
“larger classrooms” but there are fewer of them in total. The
idea at MIT was to have students “rotate” between coming
onto campus and attending online. Like the work of Al-
Yakoob and Sherali (2007), they have a global cap on the
number of students on campus at any time to reduce the usage
of unscheduled resources (toilets and shops, for example).

Hybrid teaching

The only paper, to our knowledge, that explicitly discusses
the timetabling problem with hybrid teaching is Barnhart et
al. (2022). In this paper, the online teaching space is mod-
elled as a fictitious block of classrooms with zero in-person
capacity. The timetabling model tries to maximise the num-
ber of modules students can attend with a preference for the
in-person format. However, the limitation of this model is
that classes can only be offered online or in-person rather
than potentially having some students attend physically and
some attend online.

An example of where we can see multiple instructional
modes, including a true hybrid approach, is in the open-
source solver UniTime (UniTime, 2023). These features are
implicit here and in the description of the ITC-2019 problem
(Müller et al., 2018) as the ITC-2019 problem is a simplified
variant of the UniTime problem. For example, the ITC-2019
problem may have two classes that should occur simulta-
neously with one class not requiring a room assignment,
emulating a hybrid setup. There are also cases where classes
do not require rooms or where the class subscription limit is
greater than the capacity of all the available rooms.

2.2 Our contributions

This review of the literature outlines not only the importance
and continued relevance of the UCTTP, but also outlines
some of the features of the problem. These include fea-
tures that are very common across models as well as features
relating to specific or emerging issues. Features seen in the
literature have been collected in Table 2. Table 3 provides
information on how the problemwasmodelled andwhat data
was used. For both tables, the columns have been ordered by
year of publishing.

Table 2 shows that the choice of features included varies
from model to model. This is because authors have tried
to take on the timetabling issues present at the university
where they work. The result is that much of the literature

consists of very focused models that do not generalise well,
implicitly seen in Table 3 where 76% of papers in this review
use internal data to solve the problem.

Table 2 shows that the most studied features include room
capacity issues, room and time preferences and staff/student
conflicts. Table 3 suggests that the most popular modelling
approaches include integer/binary programs. Table 2 is also
useful for spotting emerging features of interest. The most
notable aspect is the increasing number of models that are
primarily driven by student demand or models that consider
individual student requests.

It can also be seen from Table 2 that as the field has pro-
gressed over time, researchers are generally including more
features in theirmodels. This is also reflected inTable 3which
shows that researchers and practitioners in the timetabling
field are starting to explore bi-objective and multi-objective
approaches.

Onemajor gap in the research is the explicit study of online
or hybrid teaching. During the COVID-19 pandemic, many
universities needed to adapt to using these formats. However,
the university timetabling problemwith hybridmodule deliv-
ery considerations has not been adequately addressed. The
model that is presented in this paper includes “traditional”
features of the UCTTP and explicitly incorporates the new
element of hybrid teaching. The aim of this is to introduce
one approach to explicitly modelling hybrid teaching at uni-
versities using binary programming so that other researchers
can include hybrid teaching in future models. Due to the rar-
ity of this feature in existing models, there is little analysis
of how this feature impacts other features of the timetabling
problem that are well-studied.

Students and staff at universities are acutely aware of the
pedagogical and logistical issues relating to hybrid teaching
and the starting point for resolving these issues is being able
to represent hybrid teaching in a mathematical sense. With
this in mind, the key contributions of this paper are the fol-
lowing:

• Outline the information that needs to be collected about
the classes to determine if a class can happen in the
online/hybrid mode and what extra information about
students needs to be known to best cater to their teaching
preferences.

• Present a description of a generic UCTTP with hybrid
elements along with a proposed binary program formu-
lation of the problem.

• Demonstrate the model using the most up-to-date bench-
mark data available to show how the hybrid elements
would work in practice and illustrate some of the inter-
actions with other problem features.

• Discuss how this model could be used to produce a
timetable that achieves a particular strategic goal as well
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as identify unresolved logistical problems with hybrid
teaching and the research questions that these problems
present.

3 Problem description

What our review has exposed is a lack of literature explicitly
modelling hybrid teaching at universities. Where there are
explicit instances, there is a lack of analysis regarding the
benefits or drawbacks associated with the incorporation of
this feature.As stated in the previous sections, the objective of
this paper is to focus on this particular feature of the UCTTP
and provide some managerial insights regarding this feature.
This feature is important to be studied in conjunction with
other features of the timetabling problem to shed light on its
impact on the resulting schedule. In this section,we introduce
a multi-objective university timetabling model with hybrid
teaching considerations.

The timetabling problem we are modelling is the post-
enrolment approach where students provisionally select
modules they want to take and after this is done, a timetable
is constructed. Timetabling practitioners at universities in the
UK often take this approach. This timetable is typically con-
structed before the term starts, especially in the case of the
first termwhen new students register inAugust and start stud-
ies in late September. To mirror this process, the timetabling
problem in this paper is also a post-enrolment timetabling
problem. Part of the input to the mathematical model is a
list of students and modules they are requesting to take. A
module request ismet if the student is assigned to an appropri-
ate arrangement of classes (the particular arrangement varies
between universities).

Aswe are focusing on hybrid teaching, an additional input
is that each student may also provide a preference for a par-
ticular mode of module delivery (online and/or in-person). If
a student expresses a preference for a particular mode then it
is assumed this preference applies to all modules they want
to attend.

One novel element here is that the travel time between
two classes may be different for two students taking the
same classes but in different modes. For example, a student
attending online only can in theory switch instantly between
classes whereas a student attending in-person will need to
walk between rooms. If a student does not have enough time
to travel between classes or is assigned classes that overlap,
this is referred to as a scheduling issue.

The decisions we are making in this problem are the fol-
lowing: (i) when and where are classes being held, with the
option for classes to be held online and in-person simultane-
ously and (ii) what classes students attend and the mode of
study they attend the classes. These decisions are made with
respect to three different objectives: (i) maximising module

requests met, (ii) minimising the total number of scheduling
issues and (iii) minimising the total number of classes where
a student does not attend in their preferred mode.

There are constraints on these decisions. Classes are only
assigned to compatible times.What makes a time compatible
for a class depends on the university, however, what wemean
by compatible is that the time meets some set of criteria that
allows the class to be assigned to it. Similarly, classes are
only assigned to spaces that are available and compatible.
In this case, available means that the space is not in use by
other classes and is free to be used by a class. For example, a
chemistry class may need to occur in the afternoon to allow
for the setup of equipment in the morning and cannot be
assigned a space without the correct equipment or space in
use by people doing a different experiment.

Hybrid teaching is only done if the class is assigned the
appropriate space. For a teaching space to be capable of host-
ing a hybrid meeting, it needs to have a particular layout and
equipment. In practice, it is not usual that every room meets
these criteria. Therefore the collection of physical spaces at
the university can be partitioned into those that are capable
of hybrid teaching and those that are not capable of hybrid
teaching. There are two limits on class attendance. There are
limits imposed on the number of students attending a class
for pedagogical reasons and room capacity limits so that stu-
dents can fit into the physical space assigned to the class.

The structure of modules is assumed to be the same as in
the ITC-2019 competition (Müller et al., 2018). Modules are
made up of configurations, which are made up of subparts.
Each subpart contains a collection of classes. For a student
to attend a module, they need to attend a class from every
subpart within a single configuration. For example, a mod-
ule may have one configuration containing two subparts. The
first subpart could contain a single class in the form of a lec-
ture. The second subpart could contain multiple classes that
are seminars. This structure is used in this problem for two
reasons. Firstly, it is a good representation of most forms of
university modules. Secondly, it means it is easier to utilise
the ITC-2019 data sets for testing. The modelling of teach-
ers and instructors is also done in a fashion similar to the
ITC-2019 competition where we ensure that a staff member
can attend some list of classes without any scheduling issues
(no overlaps/sufficient travel time). These lists of classes are
another input to the model. This is adopted here for the same
reasons we adopt the module structure.

Modules at UK universities are either compulsory or
optional (elective). Compulsory modules are those that stu-
dents are required to take, and elective modules are ones
that the student can choose. Table 2 shows that several mod-
els in the literature also include this feature. In the problem
described here, students are assigned to their compulsory
modules as a hard constraint and the number of electivemod-
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Table 1 Indices of the features, modelling approaches and data referenced in Tables 2 and 3

Index Description

Features 1 Conflicts for teaching staff are considered

2 Conflicts for students are considered

3 Complete timetable

4 Overlapping times

5 Explicit use of online classes

6 Explicit use of hybrid classes

7 Mode requests

8 Student choice in modules

9 Students have compulsory modules

10 Staff travel time considered

11 Student travel time considered

12 Room capacity

13 Co/Prerequisite courses

14 Individual student assignment

15 Room assignment restrictions/preferences

16 Time assignment restrictions/preferences

17 Number of students on campus limited

18 Enrolment data used in the model

19 Physical student flows are considered

20 Switching classes or locations

21 Rooms and equipment have capacity and usage restrictions

22 Compact timetable preferred

Modelling approaches 1 Mixed integer program

2 Integer program

3 Binary program

4 Neighbourhoods

5 Graph colouring

6 No explicit objective

7 Single objective

8 Bi-objective

9 Multi-objective

Data used 1 Institution (Data from the author’s university)

2 International Timetabling Competition 2019 (Müller et al., 2018)

3 International Timetabling Competition 2011 (Post et al., 2013)

4 International Timetabling Competition 2007 (Mccollum et al., 2010)

ules that can be attended is maximised. The total number of
modules that a student attends is capped at a fixed number.

To summarise, we have designed a variant of the UCTTP
that includes hybrid teaching. This variant contains objec-
tives and constraints often referred to as “essential con-
straints” (Sørensen andDahms, 2014;Aziz andAizam, 2018;
Rudová et al., 2011) that have been modified to explicitly
include hybrid teaching.

The model is designed this way to maintain focus on the
novel aspect of modelling hybrid teaching explicitly whilst

including key elements of a typical UCTTP formulation for
these novel features to interact with.

Before providing the mathematical formulation of the
problem, it is important to note that there are some impor-
tant university features not included in this model that are
included in other models such as the model described by the
ITC-2019 competition (Müller et al., 2018). In that model
description, there are “distribution constraints” that enforce
rules on how classes should be distributed in the schedule
(for example, ensuring certain groups of classes happen on
different days or in the same room). These are not included in
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Table 2 Summary of what features are considered by a paper. Feature numbers are given in Table 1

References Feature
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Badri (1996) ✓ ✓ ✓

Carter (2001) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Daskalaki et al. (2004) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Avella and Vasil’Ev (2005) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Di Gaspero and Schaerf (2006) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Schimmelpfeng and Helber (2007) ✓ ✓ ✓ ✓ ✓ ✓

Al-Yakoob and Sherali (2007) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dammak et al. (2008) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

De Causmaecker et al. (2009) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Chaudhuri and De (2010) ✓ ✓ ✓ ✓ ✓

Santos et al. (2012) ✓ ✓ ✓ ✓ ✓

Aizam and Caccetta (2014) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Méndez-Díaz et al. (2016) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Vermuyten et al. (2016) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fonseca et al. (2017) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Lindahl et al. (2018) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Gonzalez et al. (2018) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Barnhart et al. (2022) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Holm et al. (2022) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Gogos et al. (2022) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

This paper ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3 Summary of what
modelling approach and data a
paper uses

References Modelling approach Data used
1 2 3 4 5 6 7 8 9 1 2 3 4

Badri (1996) ✓ ✓ ✓

Carter (2001) ✓ ✓ ✓

Daskalaki et al. (2004) ✓ ✓ ✓

Avella and Vasil’Ev (2005) ✓ ✓ ✓

Di Gaspero and Schaerf (2006) ✓ ✓ ✓

Schimmelpfeng and Helber (2007) ✓ ✓ ✓

Al-Yakoob and Sherali (2007) ✓ ✓ ✓

Dammak et al. (2008) ✓ ✓ ✓

De Causmaecker et al. (2009) ✓ ✓ ✓ ✓

Chaudhuri and De (2010) ✓ ✓

Santos et al. (2012) ✓ ✓

Aizam and Caccetta (2014) ✓ ✓ ✓ ✓

Méndez-Díaz et al. (2016) ✓ ✓ ✓

Vermuyten et al. (2016) ✓ ✓ ✓ ✓

Fonseca et al. (2017) ✓ ✓ ✓

Lindahl et al. (2018) ✓ ✓ ✓

Gonzalez et al. (2018) ✓ ✓ ✓

Barnhart et al. (2022) ✓ ✓ ✓

Holm et al. (2022) ✓ ✓ ✓ ✓

Gogos et al. (2022) ✓ ✓ ✓ ✓

Our model ✓ ✓ ✓ ✓

Modelling approach and data numbers are given in Table 1
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Fig. 1 An illustration of a situation where there are ten timeslots and
three timesets. The arrows show the “gaps” between the timesets one
and two, with the minimum distance “between” the timesets being one
timeslot. The intersection of timesets one and three is the set containing
timeslots one and two, this means that timesets one and three overlap

this model but could bemodelled using the notation provided
in this paper to bring the problem even closer to the real-life
problem (see Holm et al., 2022).

4 Mathematical formulation

Before detailing the mathematical formulation specific, ter-
minology and sets are introduced to make the presentation
of the model more efficient. Firstly, the main variables are
defined. Secondly, the objectives to be optimised are defined.
Finally, it is explained how these objectives are constrained.

4.1 Terminology and notation

Timeslots and timesets

In thismodel, it is assumed that the university term is split into
equal lengths of time called timeslots, and a timeset is defined
as a subset of these timeslots. This allows for complicated
arrangements to be described. For example, an arrangement
where a class occurs every other week of term and starts at
9:30 on Mondays can be described by a single timeset. We
say that two timesets overlap if the intersection of these sets is
non-empty. We define the time between two timesets as the
minimum number of timeslots between any two timeslots.
Figure1 illustrates these definitions.

Set definitions

The following list outlines the definitions of the sets that
are used in the mathematical formulation of the model. In a
slight abuse of notation, we use the setG as a placeholder for
another set that would be a subset of some larger set. This is
to streamline some of the definitions by avoiding repetition.

S: Set of students.
H : Set of teaching staff.

C : Set of classes.
K : Set of modules.
L: Set of timeslots.
T : Set of timesets.
R: Set of spaces where classes can occur.
Ks : Set of modules requested by student s ∈ S. Ks ⊆ K .

K core
s : Set of compulsory modules student s ∈ S is required

to attend. K core
s ⊆ K .

K elec
s : Set of elective modules student s ∈ S would like to

attend. K elec
s ⊆ K .

Sk : Set of students requesting module k ∈ K . Sk ⊆ S.
Ru
r : Set of timeslots when room r ∈ R is unavailable.

Ru
r ⊆ L .

Rc: Set of spaces that are suitable for class c ∈ C to use.
Rc ⊆ R.

Tc: Set of timesets that are suitable for class c ∈ C to use.
Tc ⊆ T .

RG : Let G ⊆ C . The set RG is defined as RG := ∩c∈G Rc.
CG : Let G ⊆ C . The set CG is defined as CG :=

{(c1, c2) ∈ G × G : c1 �= c2}.
RC
r : Let r ∈ R. The set RC

r is defined as RC
r := {c ∈ C :

r ∈ Rc}.
Ol : Let l ∈ L . The set Ol is defined as Ol := {t ∈ T : l ∈

t}.
Fk : Set of configurations for module k ∈ K .

Pf ,k : Set of subparts for configuration f ∈ Fk , where k ∈
K .

Cp, f ,k : Set of classes for subpart p ∈ Pf ,k , where f ∈ Fk ,
where k ∈ K .

Cs : Set of classes that student s ∈ S could take if offered.
In particular, Cs = ∪k∈Ks ∪ f ∈Fk ∪p∈Pf ,kCp, f ,k .

Ch : Set of classes that teaching staff member h ∈ H must
attend if offered.

Travel time

Define A as the matrix with entries that approximate the
travel time between pairs of rooms. In particular, for two
rooms r1, r2 ∈ R, the entry Ar1,r2 is equal to the number of
timeslots that it takes to travel from r1 to r2. It is assumed
that A is symmetric and that Ar ,r = 0.

Hybrid teaching elements

Physical rooms have a finite capacity. For a room r ∈ R,
the capacity is denoted as cap(r). The online space is mod-
elled as a room that is always available and can host multiple
classes at the same time. The capacity of this space is con-
sidered unlimited, that is, cap(r∗) = ∞. This space will be
denoted as r∗ and a class c ∈ C can be held online if and
only if r∗ ∈ Rc. For pedagogical reasons, classes still have
a subscription limit, denoted as sub(c) for c ∈ C . This sub-
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scription limit is the maximum number of students who can
take a particular class.

It is assumed that students can move instantly from an
online class to an online class and that it is a fixed number
of timeslots d∗ ∈ Z

+
0 to travel from an online class to an

in-person class and vice-versa. In particular, Ar∗,r∗ = 0 and
Ar∗,r = d∗ for all r ∈ R\{r∗}.

Classes are allowed to be taught in a hybrid format pro-
vided that the physical room has the proper equipment.
Define Rh as a subset of R containing all of the locations
that allow for hybrid teaching. For a class to be a hybrid
class then not only does the room assigned to the class need
to be in Rh but the online portion of the class needs to be
scheduled for the same time as the in-person class. For con-
sistency, r∗ ∈ Rh .

Different students prefer different modes of teaching, or
may not have a preference. Define πs as the preference of
student s ∈ S. πs is equal to one if the student prefers in-
person teaching, negative one if the student prefers online
teaching, and zero if they have no preference towards either
format.

Module restrictions

Students should not take an excessive number of modules
for both financial and pedagogical reasons. We introduce a
parameter kcaps that indicates the maximum number of mod-
ules student s ∈ S is allowed to take.

Parameter arrays

To streamline the discussion of constraints in the timetabling,
the notion of a parameter array is introduced. These are fully
determined by the input data and record various relationships
between timesets and rooms. The following list provides the
definitions of these parameter arrays.

D0: A matrix where D0[r , t] is equal to one if room r
is unavailable at some point during timeset t , zero
otherwise.

D1: Amatrixwhere D1[t1, t2] is equal to one if t1 overlaps
t2, zero otherwise.

D2: An array where D2[r1, r2, t1, t2] is equal to one if
there is not enough time between t1 and t2 to travel
between r1 and r2, zero otherwise.

4.2 Variables

xc,r ,t : Binary decision variable indicating if class c ∈ C is
held in space r ∈ R during timeset t ∈ T .

yRc,r : Binary decision variable indicating if class c ∈ C is
held in space r ∈ R.

yTc,t : Binary decision variable indicating if class c ∈ C is
held during timeset t ∈ T .

gk : Binary decision variable indicating ifmodule k ∈ K
is offered.

qk, f : Binary decision variable indicating if configuration
f ∈ Fk of module k ∈ K is offered.

wk, f ,p: Binary decision variable indicating if subpart p ∈
Pf ,k in configuration f ∈ Fk of module k ∈ K is
offered.

as,k, f ,p,c: Binary decision variable indicating if student s ∈ S
is assigned class c ∈ Cp, f ,k , where p ∈ Pf ,k , where
f ∈ Fk , where k ∈ K .

αonl
s,c : Binary decision variable indicating if student s ∈ S

is assigned to the online version of class c ∈ C .
α
inp
s,c : Binary decision variable indicating if student s ∈ S

is assigned to the in-person version of class c ∈ C .
bs,k, f ,p: Binary decision variable indicating if student s ∈ S

is assigned some class in subpart p ∈ Pf ,k , where
f ∈ Fk , where k ∈ K .

ms,k, f : Binary decision variable indicating if student s ∈ S
is assigned to configuration f ∈ Fk , where k ∈ K .

ns,k : Binary decision variable indicating if student s ∈ S
is assigned to module k ∈ K .

βonl
s,c,t : Binary decision variable indicating if student s ∈ S

attends class c ∈ C during timeset t ∈ T in the
online format.

β
inp
s,c,t : Binary decision variable indicating if student s ∈ S

attends class c ∈ C during timeset t ∈ T in the
in-person format.

γs,c,r ,t : Binary decision variable indicating if student s ∈ S
attends class c ∈ C in room r ∈ R during timeset
t ∈ T .

τs,c: Binary decision variable indicating if student s ∈ S
is not attending class c ∈ C in their preferred mode.

hs,c1,c2 : Binary decision variable indicating if there is a
scheduling issue with assigning student s to c1 ∈ C
and c2 ∈ C .

4.3 Objectives

Maximise the total number of elective module requests met

Individual students provide a list of elective modules they
would like to attend. The aim is to assign students to as many
of these modules as possible. This model considers the total
requests:

max z1 =
∑

s∈S

∑

k∈K elec
s

ns,k . (1)

The model does not force the timetable to be complete
(feature 22 in Table 2) so maximising this objective may
result in classes with no time or room assignment.
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Minimise the total number of deviations frommode
requests

Students may provide a preference for either the online for-
mat or the in-person format. The aim is to align with this
preference as much as possible. This model considers the
total deviation from mode requests (the amount of mode
requests not met):

min z2 =
∑

s∈S

∑

c∈C
τs,c. (2)

Minimise the total number of student scheduling issues

There are two scheduling issues considered in this model.
The first is where a student is assigned to two classes that
overlap in time. The second is where a student is assigned to
twoclasses that are placed in space and time in such away that
it is impossible to travel between them without leaving one
class early or arriving at the other late. This model considers
the total number of scheduling issues in the timetable:

min z3 =
∑

s∈S

∑

c1∈C

∑

c2∈C
hs,c1,c2 . (3)

One advantage of having the number of scheduling issues
as a soft constraint instead of a hard constraint is that the
model is less likely to become infeasible. Another advan-
tage is that this objective gives another measure of solution
quality (Barnhart et al., 2022). In a decision-making con-
text, knowing the number of issues is more informative than
infeasibility (Sørensen and Dahms, 2014).

There are often so many students at a university that
achieving no issues is nearly impossible. The current practice
at universities is for students to meet with a staff member and
discuss compromising on module choice to resolve schedul-
ing issues.

4.4 Constraints

In this section, the hard constraints of the model are outlined.

Linking constraints for resource assignment

It is convenient for the description of the model to be able to
switch between the collection of yRc,r and yTc,t variables, and
the collection of xc,r ,t variables. The linking constraints are
as follows:

yRc,r =
∑

t∈T
xc,r ,t , ∀r ∈ R, c ∈ C, (4)

yTc,t ≤
∑

r∈R

xc,r ,t , ∀t ∈ T , c ∈ C, (5)

∑

r∈R

xc,r ,t ≤ 2yTc,t , ∀t ∈ T , c ∈ C . (6)

Constraints 4 state that if yRc,r indicates that a class c is
happening in a room r then this is if and only if exactly
one of the xc,r ,t variables indicates the same arrangement.
Constraints 5 and Constraints 6 combined achieve a similar
outcome for time arrangements. Two sets of constraints are
needed because the summation in Constraints 5 and Con-
straints 6 can be equal to two due to how hybrid teaching is
modelled in this paper.

Classes can only be assigned compatible teaching spaces
and timesets

For each c ∈ C add the following constraints:

∑

r∈R

xc,r ,t = 0, ∀t ∈ T \ Tc, (7)

∑

t∈T
xc,r ,t = 0, ∀r ∈ R \ Rc. (8)

Classes should not happen in a teaching space when that
space is not available

∑

t∈T

∑

r∈R

D0[r , t]xc,r ,t = 0, ∀c ∈ C . (9)

Classes can only be assigned at most one timeset

∑

t∈T
yTc,t ≤ 1, ∀c ∈ C . (10)

Classes can only be assigned a maximum of two teaching
spaces

∑

r∈R\{r∗}
yRc,r ≤ 1, ∀c ∈ C, (11)

∑

r∈R

yRc,r ≤ 2, ∀c ∈ C . (12)

Constraints 11 ensure that a class can only be held in
at most one in-person teaching space. Constraints 11 and
Constraints 12 combined then ensure that if there are two
teaching spaces assigned, exactly one will be held in person
and the other will be held online.

Classes canhappenonline and in-person if thephysical room
is appropriate

yRc,r∗ ≤ 1 −
∑

r∈R\Rh

yRc,r , ∀c ∈ C . (13)
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Constraints 13 ensure that when a class is assigned an in-
person teaching space not capable of hybrid teaching then
it is impossible for the class to also be assigned the online
teaching space and vice versa.

In-person classes should not use the same teaching space at
the same time

∑

c∈Rc
r

∑

t∈Ol

xc,r ,t ≤ 1, ∀r ∈ R \ {r∗}, l ∈ L. (14)

Module is offered if at least one configuration is offered

gk |Fk | ≥
∑

f ∈Fk
qk, f , ∀k ∈ K , (15)

gk ≤
∑

f ∈Fk
qk, f , ∀k ∈ K . (16)

Configuration is offered if andonly if every subpart is offered

qk, f |Pf ,k | =
∑

p∈Pf ,k

wk, f ,p, ∀ f ∈ Fk, k ∈ K . (17)

Subpart is offered if at least one class in the subpart is
offered

wk, f ,p|Cp, f ,k ||R||T | ≥
∑

c∈Cp, f ,k

∑

r∈R

∑

t∈T
xc,r ,t ,

∀p ∈ Pf ,k, f ∈ Fk, k ∈ K , (18)

wk, f ,p ≤
∑

c∈Cp, f ,k

∑

r∈R

∑

t∈T
xc,r ,t ,

∀p ∈ Pf ,k, f ∈ Fk, k ∈ K . (19)

Staff must be able to attend classes they can teach

For each staff member h ∈ H , let G = Ch . For each
(c1, c2) ∈ CG add the following constraints:

D2[r1, r2, t1, t2](xc1,r1,t1 + xc2,r2,t2) ≤ 1,

∀t1 ∈ Tc1 , t2 ∈ Tc2 , r1 ∈ Rc1, r2 ∈ Rc2 . (20)

Student does not attend amodule they do not request

ns,k ≤ 0, ∀k ∈ K \ Ks, s ∈ S. (21)

Student does not attend amodule that is not offered

ns,k ≤ gk, ∀k ∈ K , s ∈ S. (22)

Student must attend all compulsory modules

ns,k = 1, ∀k ∈ K core
s , s ∈ S. (23)

Student does not attend too manymodules

∑

k∈K
ns,k ≤ kcaps , ∀s ∈ S. (24)

Student does not attend a class that is not offered

α
inp
s,c ≤

∑

t∈T

∑

r∈R\{r∗}
xc,r ,t , ∀c ∈ C, s ∈ S, (25)

αonl
s,c ≤

∑

t∈T
xc,r∗,t , ∀c ∈ C, s ∈ S. (26)

Student attends a module if they attend a configuration for
that module

∑

f ∈Fk
ms,k, f = ns,k,

∀k ∈ K , s ∈ S. (27)

Student assigned configuration if they attend a class from
each subpart

∑

p∈Pf ,k

bs,k, f ,p = |Pf ,k |ms,k, f ,

∀ f ∈ Fk, k ∈ K , s ∈ S. (28)

Student has at most one class from a subpart

∑

c∈Cp, f ,k

as,k, f ,p,c = bs,k, f ,p,

∀p ∈ Pf ,k, f ∈ Fk, k ∈ K , s ∈ S. (29)

Student attends either the online session or the in-person
session

as,k, f ,p,c = αonl
s,c + α

inp
s,c ,

∀c ∈ Cp, f ,k, p ∈ Pf ,k, f ∈ Fk, k ∈ K , s ∈ S.

(30)

Physical room capacities cannot be exceeded

∑

s∈Sk
α
inp
s,c ≤

∑

r∈Rc\{r∗}
cap(r)yRc,r ,

∀c ∈ Cp, f ,k, p ∈ Pf ,k, f ∈ Fk, k ∈ K . (31)
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Class subscription capacities cannot be exceeded

∑
s∈Sk (α

inp
s,c + αonl

s,c ) ≤ sub(c),

∀c ∈ Cp, f ,k, p ∈ Pf ,k, f ∈ Fk, k ∈ K . (32)

Parent–child classes

It is often the case that some classes are prerequisites for
other classes. For example, to attend a workshop in a module
the student should attend the lecture for that module also.
Given a student s ∈ S, for every parent/child class pair (with
the child class denoted as cch and the parent denoted as cpar )
add the following constraint:

α
inp
s,cch + αonl

s,cch ≤ α
inp
s,cpar + αonl

s,cpar . (33)

Mode requests

The τ variables need to be linked to the allocation of students.

τs,c ≥ πs

(
αonl
s,c − α

inp
s,c

)
, ∀s ∈ S, c ∈ C, (34)

τs,c ≤ αonl
s,c + α

inp
s,c , ∀s ∈ S, c ∈ C . (35)

Constraints 34 force the value to one if the preference is
not met and Constraints 35 force the value to zero if the class
is not attended by that student.

Detect if a student has an overlapping class

For the objective z3 described inEq.3 to correctly detect over-
laps, the hs,c1,c2 variables need to be linked to the assignment
of student s ∈ S. This is done by first adding the following
constraints:

α
inp
s,c × yTc,t = β

inp
s,c,t , ∀s ∈ S, c ∈ C, t ∈ T , (36)

αonl
s,c × yTc,t = βonl

s,c,t , ∀s ∈ S, c ∈ C, t ∈ T . (37)

Next, for every student s ∈ S and each (c1, c2) ∈ CCs ,
where CCs is the pair-wise combinations of classes that the
student can take, the following constraints are added:

D1[t1, t2](βonl
s,c1,t1 + β

inp
s,c1,t1 + βonl

s,c2,t2 + β
inp
s,c2,t2)

≤ 1 + hs,c1,c2 , ∀t1 ∈ Tc1, t2 ∈ Tc2 . (38)

Constraints 36 to 38 ensure that hs,c1,c2 is equal to one if
c1 and c2 overlap in time and student s is assigned to both of
classes. Constraints 36 and 37 are nonlinear but this can be
resolved by replacing them with the following constraints:

β
inp
s,c,t ≤ α

inp
s,c , ∀s ∈ S, c ∈ C, t ∈ T , (39)

βonl
s,c,t ≤ αonl

s,c , ∀s ∈ S, c ∈ C, t ∈ T , (40)

β
inp
s,c,t ≤ yTc,t , ∀s ∈ S, c ∈ C, t ∈ T , (41)

βonl
s,c,t ≤ yTc,t , ∀s ∈ S, c ∈ C, t ∈ T , (42)

β
inp
s,c,t ≥ α

inp
s,c + yTc,t − 1, ∀s ∈ S, c ∈ C, t ∈ T , (43)

βonl
s,c,t ≥ αonl

s,c + yTc,t − 1, ∀s ∈ S, c ∈ C, t ∈ T . (44)

Detect if a student has enough travel time between classes

For the objective z3 described in Eq.3 to correctly detect
travel time issues, the hs,c1,c2 variables again need to be
linked to the assignment of student s ∈ S. This is done in a
similar way to overlap detection and involves first adding the
following constraints:

β
inp
s,c,t × yRc,r = γs,c,r ,t ,

∀s ∈ S, c ∈ C, t ∈ T , r ∈ R \ {r∗}, (45)

βonl
s,c,t × yRc,r∗ = γs,c,r∗,t ,

∀s ∈ S, c ∈ C, t ∈ T . (46)

Then, for every student s ∈ S and each (c1, c2) ∈ CCs ,
where CCs is the pair-wise combinations of classes that the
student can take, add the following constraints:

D2[r1, r2, t1, t2](γs,c1,r1,t1 + γs,c2,r2,t2)

≤ 1 + hs,c1,c2 ,

∀t1 ∈ Tc1, t2 ∈ Tc2 , r1 ∈ Rc1 , r2 ∈ Rc2 . (47)

These constraints ensure that hs,c1,c2 is equal to one if stu-
dent s does not have enough time to travel between classes
c1 and c2. Once again these are nonlinear constraints so Con-
straints 45 andConstraints 46 are replacedwith the following:

γs,c,r ,t ≤ β
inp
s,c,t ,

∀s ∈ S, c ∈ C, t ∈ T , r ∈ R \ {r∗}, (48)

γs,c,r ,t ≤ yRc,r ,

∀s ∈ S, c ∈ C, t ∈ T , r ∈ R \ {r∗}, (49)

γs,c,r ,t ≥ β
inp
s,c,t + yRc,r − 1,

∀s ∈ S, c ∈ C, t ∈ T , r ∈ R \ {r∗}, (50)

γs,c,r∗,t ≤ βonl
s,c,t , ∀s ∈ S, c ∈ C, t ∈ T , (51)

γs,c,r∗,t ≤ yRc,r∗ , ∀s ∈ S, c ∈ C, t ∈ T , (52)

γs,c,r∗,t ≥ βonl
s,c,t + yRc,r∗ − 1,

∀s ∈ S, c ∈ C, t ∈ T . (53)

5 Solutionmethod

The solution method used in this paper involves a prepro-
cessing stage and then a stage that solves the three objectives
in a certain order.
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5.1 Preprocessing steps

The full mathematical formulation includes some variables
and constraints that are not necessary and therefore can be
removed from the model. In this section, some of the steps
taken to remove redundant variables and constraints are out-
lined. This does not necessarily remove all redundancies and
whilst more sophisticated reductionmethods exist (see Holm
et al., 2022) these are not employed in this paper.

Variables that can be removed

The first collection of variables that can be omitted from the
model includes xc,r ,t variables for each c ∈ C where either
t ∈ T \Tc or r ∈ R\Rc. This is because Constraints 7 and 8
force these variables to be zero. Similarly, if D0[r , t] = 1 for
some pairing (r , t)where t ∈ T and r ∈ R then for all classes
c ∈ C it is the case that Constraint 9 is forcing xc,r ,t = 0 and
therefore these variables can be removed from the model.

The second collection of variables that can be omitted are
from the student sectioning part of the model. ns,k = 0 for
s ∈ S and k ∈ K \ Ks therefore these variables can be
removed. Furthermore, any variable with k ∈ K \ Ks in the
indexing for a given student s ∈ S can be removed as these
will be forced to zero. Finally, any variable with c ∈ Cp, f ,k

for k ∈ K \ Ks in the indexing can be removed. Essentially
what is meant by this is that any variable relating to a course
a student does not want to attend is removed from the model.

Overlap and travel time constraints

For any two timesets t1 ∈ T and t2 ∈ T , it is always true that
D1[t1, t2] ≤ D2[r1, r2, t1, t2] for any choice of r1 and r2 from
the set R. Therefore if two timesets that overlap are identified
and Constraints 38 to 44 are included in the model there is no
need to include Constraints 47 to 53 for those two timesets.
There is a similar process for Constraints 20 where if two
timesets overlap there is no need to include the constraint for
every room combination. We only need to constrain the time
assignment using the yT variables in this case.

Furthermore, when considering a pair of classes c1 and
c2, it is possible that for a pair of timesets (t1, t2) ∈ Tc1 ×Tc2
we have that D2[r1, r2, t1, t2] = 0 for any pair of rooms
(r1, r2) ∈ Rc1 × Rc2 . This means there is no need to include
Constraints 47 to 53 for this timeset pair (for this pair of
classes). These two checks help reduce the total number of
constraints, especially if classes have a large number of teach-
ing spaces they could be assigned to.

A final check that is employed is we do not check for
scheduling issues for pairs of classes that we know cannot be
attended together. For example, students can only participate
in one class from a subpart (Constraint 29), therefore, wewill
never have problems with a pair of classes from the same

subpart. The impact of this preprocessing step is dependent
on the course and module structure assumed.

5.2 Objective ordering and solving

The solution method involves solving three single objective
problems sequentially. The objectives are ordered based on
importance. One such ordering is as follows:

1. Maximise the total number of elective module requests
met (z1).

2. Minimise the total number of deviations from mode
requests (z2).

3. Minimise the total number of student scheduling issues
(z3).

In this case, the approach would be to first maximise z1
using a commercial solver. Denote the value of this solution
as z∗1. The constraint z1 = z∗1 is added and themodel is solved
to maximise z2. Similarly, denote the value of this solution as
z∗2. We add the constraint z2 = z∗2 to the model and minimise
z3.

6 Computational experiments

In this section, the experimental data used to test the model
is described and computational experiments are performed
to demonstrate the use of the model. All experiments were
completed on an internal computing node running Ubuntu
22.04.1 LTS with an Intel Xeon Gold 6348 CPU running at
2.60GHz and 528GB of RAM. The model was implemented
in Python 3.9.16 and solutionswere foundusingGurobiOpti-
mizer version 10.0.2.

6.1 Experimental data

The experimental data has been taken from the ITC-2019
competition (Müller et al., 2018). These data sets are based
on data taken from real-world universities. These provide the
model with most of the information needed. However, since
these data sets do not explicitly consider the online space,
there are features of the model presented in this paper that
require specifying for each experiment. This includes:

• The value of d∗ in the matrix A.
• The value of πs for each student s ∈ S.
• The value of kcaps for each student s ∈ S.
• The set Rh that identifies which physical rooms are suit-
able for hybrid teaching.

In our experiments, we assume that d∗ is one and a
half times bigger than the largest distance between phys-
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ical rooms. We chose this number as it roughly estimates
the travel time from student accommodation to campus for
some universities in the UKwe are familiar with. In practice,
this value will vary depending on the university. Setting the
distance to this value also makes switching between modes
undesirable.

To align the datawith themotivation for thismodel, we are
also creating a shortage of capacity in physical rooms. This
shortage reflects a situation similar to that of the COVID-
19 pandemic. Barnhart et al. (2022) quoted that during this
period they had a fourfold reduction in physical space on
campus and therefore we are reducing the capacity of each
room in the data sets by 75%. Applying this reduction to the
four instances means that room capacity is the limiting factor
to the total in-person attendance.

It is also assumed that every student has one of three pref-
erences: online teaching, in-person teaching or no preference
(πs equal to −1, 1 or 0 respectively). A systematic way of
modifying the data is applied. In the ITC-2019 data, each
student has an “ID” number. If a student’s ID number is a
multiple of three, they prefer the online mode. If the remain-
der after dividing their ID number by three is two, they have
no preference. All other students prefer the in-person mode.

In the ITC-2019 competition, students are assigned to
every module they request. This is equivalent to treating
every module as compulsory. To demonstrate the objective
of maximising the number of elective module requests met,
we assume in our experiments that all modules are elective.
This means there is no requirement to assign a student to any
of the modules they request. The value of kcaps for each s ∈ S
is the length of the list of requests for that student.

Each “SameAttendee” distribution constraint used to
model staff in the ITC-2019 problem has an associated list
of classes (see Müller et al., 2018). The class lists from the
required distributions of this type in the data are used as part
of our staff constraints. In particular, each distribution con-
straint in the data is a staff member h ∈ H and the class list
forms the set Ch used in Constraints 20.

Finally, we need to specify the set Rh . It is assumed that a
class can only happen in the hybridmode if the physical room
assigned to it has a capacity of 30 or more people. In partic-
ular, if cap(r) ≥ 30 for r ∈ R then r ∈ Rh . The assumption
is based on the observation that only the larger lecture halls
at universities have the correct audio-visual equipment for
hybrid teaching.

The four ITC-2019 instances used in this paper are from
various stages of the competition and are currently archived
on the competition website. Table 4 records the name of
each instance and the critical features of that instance. To
reduce the size of the problem, a subset of students from
each instance is used in the experiment. This is defined by
the ID of the first student in the subset and howmany students
are taken after that student. For example, with the instance

mary-fal18, Table 4 says that the “Start” is equal to 600 and
“Count” is equal to 400 meaning only students 600 to 999
are considered.

Instance one: wbg-fal10

It is possible to solve any ordering of objectives for wbg-
fal10 as it is a small instance. Table 5 provides the objective
values for the six possible orderings. It can be seen that only
z1 (the number of elective module requests met) and z2 (the
number of mode request deviations) influence each other.
Table 6 shows that lexicographically optimal solutions for
this instance either meet all the student mode preferences or
offer all requested modules.

Instance two: pu-cs-fal07

In the instance pu-cs-fal07, 1000 students are considered.
Likewbg-fal10, no student conflicts arise in this instance and
the only objectives that appear to influence each other are z1
and z2. It can be seen from Table 5 that the lexicographically
optimal solutions have one of two objective values. Looking
at the class attendance, we see that the ratio of in-person to
online attendance is about 1:2 suggesting that when students
have no preference for a mode they get placed into the online
mode.

Instance three: muni-fsps-spr17

Only 100 students from muni-fsps-spr17 are used, how-
ever, each student attends nearly eight times the number of
classes on average than in pu-cs-fal07. When z1 is prioritised
over z2, there is a larger increase in z2 than in pu-cs-fal07.
This suggests a stronger link between the two objectives in
this instance than in pu-cs-fal07. There is some relationship
between z2 and z3 also.

Instance four: mary-fal18

The mary-fal18 instance considers 400 students. Table 5
shows that the lexicographically optimal solutions have one
of five objective values with only six possible orderings.
That makes this instance a good instance to demonstrate how
objective ordering can influence the solution.

Orderings prioritising z1 lead to solutions with the max-
imum amount of module requests met. The best possible
values of z2 and z3 can be attained if we optimise those
first (in either order), however when z1 is optimised before
one or both of these objectives this cannot be done. This
shows that z1 influences objectives directly and influences
relations between objectives (compare orderings z1, z2, z3
with z1, z3, z2).
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Table 4 Instances from the
ITC-2019 with their key
features. “Start” and “Count”
indicate the subset of students
used in the experiment

Instance |S| |K | |C | |T | |R| |Rh \ {r∗}| Start Count

wbg-fal10 19 21 150 154 8 0 1 19

pu-cs-fal07 2002 44 174 182 14 4 1000 1000

muni-fsps-spr17 865 226 561 1953 45 40 1 100

mary-fal18 5051 540 951 503 94 35 600 400

Column |Rh \ {r∗}| is based on our assumptions about hybrid rooms

Figure 3 shows that if matching the mode preference (z2)
is prioritised over module requests (z1) then fewer requests
can be met. Figure2 shows clearly that prioritising z3 over
z1 removes conflicts but also shows that matching students’
mode requests can reduce the number of conflicts (likely due
to its direct influence on the number of modules attended by
students indicated by Fig. 3).

7 Analysis and extensions

We believe that considering the hybrid teaching format
presents new challenges that have not been fully researched
in the timetabling literature. Some of these challenges are
discussed here.

7.1 Impact of including hybrid teaching

From Table 5, it can be seen that many classes are attended
online. This demonstrates how well the model presented in
this paper satisfies the mode preferences. By construction,
one-third of the student population in the instances preferred
in-person teaching and the other two-thirds either had no
preference or preferred online teaching. This is roughly rep-
resented in the ratio of classes attended in-person to classes
attended online. The results in the previous section also sug-
gest that the model takes advantage of the students who have
no preference and assigns them to themore flexible and high-
capacity online space. This alleviates pressure on physical
resources whilst delivering the same amount of teaching.
Fromamodelling point of view, the inclusion of hybrid teach-
ing adds more flexibility to the timetabling process because
a purely online timetable is not impacted by travel times
and room capacity in the same way as a purely in-person
timetable. In practice, it would be up to a practitioner to
decide to what extent the online space should be used.

7.2 Impact of objective ordering

If a university has preconceived thoughts on how the objec-
tives should be ordered, then this model can cater to those
preferences. This model can also be used to gain more
information about the problem. Trying different orders of

Table 5 Objective values for each instance and their six potential objec-
tive orderings

Ordering Objective Classes attended Switch
z1 z2 z3 Total In-person Online z4

wbg-fal10

z1,z2,z3 97 43 0 199 27 172 5

z1,z3,z2 97 43 0 199 27 172 5

z2,z1,z3 71 0 0 142 16 126 1

z2,z3,z1 71 0 0 142 17 125 2

z3,z1,z2 97 43 0 199 27 172 6

z3,z2,z1 71 0 0 142 17 125 2

pu-cs-fal07

z1,z2,z3 1226 11 0 1611 567 1044 0

z1,z3,z2 1226 11 0 1611 596 1015 0

z2,z1,z3 1220 0 0 1599 665 934 0

z2,z3,z1 1220 0 0 1599 641 958 0

z3,z1,z2 1226 11 0 1611 561 1050 0

z3,z2,z1 1220 0 0 1599 641 958 0

muni-fsps-spr17

z1,z2,z3 980 106 8 1552 567 985 13

z1,z3,z2 980 114 0 1552 535 1017 11

z2,z1,z3 926 0 0 1366 503 863 15

z2,z3,z1 926 0 0 1366 450 916 8

z3,z1,z2 980 114 0 1552 562 990 11

z3,z2,z1 926 0 0 1366 450 916 8

mary-fal18

z1,z2,z3 1597 109 36 1613 517 1096 13

z1,z3,z2 1597 111 34 1613 512 1101 13

z2,z1,z3 1498 0 26 1509 536 973 2

z2,z3,z1 1480 0 0 1480 544 936 5

z3,z1,z2 1571 98 0 1571 514 1057 13

z3,z2,z1 1480 0 0 1480 544 936 5

z4 is the number of students who switch between online and in-person
classes twice or more on the same day (measured using the found solu-
tion, not optimised)

objectives can be used to gain insight into how and to what
extent the objectives influence each other.

One example is that in the instance mary-fal18. It was
identified here that different orderings typically resulted in
differing solutions.Auniversitymayhave an ideaof anobjec-
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Table 6 Key metrics for
individual students in tabular
form

Ordering % Electives # Conflicts % Mode
Max Min Avg Max Min Avg Max Min Avg

wbg-fal10

z1,z2,z3 100 100 100.00 0 0 0.00 100 25 77.42

z1,z3,z2 100 100 100.00 0 0 0.00 100 30.77 77.93

z2,z1,z3 100 0 73.51 0 0 0.00 100 100 100.00

z2,z3,z1 100 0 73.51 0 0 0.00 100 100 100.00

z3,z1,z2 100 100 100.00 0 0 0.00 100 25 77.90

z3,z2,z1 100 0 73.51 0 0 0.00 100 100 100.00

pu-cs-fal07

z1,z2,z3 100 100 100.00 0 0 0.00 100 0 99.66

z1,z3,z2 100 100 100.00 0 0 0.00 100 0 99.66

z2,z1,z3 100 0 99.67 0 0 0.00 100 100 100.00

z2,z3,z1 100 50 99.70 0 0 0.00 100 100 100.00

z3,z1,z2 100 100 100.00 0 0 0.00 100 0 99.66

z3,z2,z1 100 50 99.70 0 0 0.00 100 100 100.00

muni-fsps-spr17

z1,z2,z3 100 100 100.00 1 0 0.08 100 56.52 94.97

z1,z3,z2 100 100 100.00 0 0 0.00 100 52.17 94.62

z2,z1,z3 100 73.33 95.75 0 0 0.00 100 100 100.00

z2,z3,z1 100 73.33 95.75 0 0 0.00 100 100 100.00

z3,z1,z2 100 100 100.00 0 0 0.00 100 52.17 94.62

z3,z2,z1 100 73.33 95.75 0 0 0.00 100 100 100.00

mary-fal18

z1,z2,z3 100 100 100.00 6 0 0.09 100 0 94.62

z1,z3,z2 100 100 100.00 6 0 0.09 100 0 94.54

z2,z1,z3 100 0 95.08 6 0 0.07 100 100 100.00

z2,z3,z1 100 0 94.36 0 0 0.00 100 100 100.00

z3,z1,z2 100 66.67 98.83 0 0 0.00 100 0 94.96

z3,z2,z1 100 0 94.36 0 0 0.00 100 100 100.00

“%Electives” is the percentage of electivemodules a student is assigned from their list. “#Conflicts” represents
the number of scheduling issues a student has. “% Mode” is the percentage of classes a student is assigned
that is in their preferred mode

tive order they want but find that a different ordering is better
suited to their needs.

Table 5 shows that differences in the solutions generated
by different orderings might be very different or only have
subtle differences. This demonstrates that whilst the ordering
of objectives does impact the difference in solutions, it seems
that the extent of the difference is unique for each instance.

7.3 Model extensions

Compulsory modules and credit loads

Constraints 23 describe compulsory modules. The model
becomes infeasible if a student cannot be offered amandatory
module. This is not a useful finding in practice as univer-
sities ultimately need a timetable (Sørensen and Dahms,

2014). One approach would be to relax the constraint and
instead attach a high penalty for not ensuring every student
is assigned to their mandatory modules. Including hybrid
teaching offers flexibility as it facilitates a meaningful two-
stage approach of time assignment and then room assignment
(Barnhart et al., 2022).

It is common for a student to not only have mandatory or
compulsory modules but to be required to attend a certain
total number of modules making up a credit load. The model
presented in this paper could be extended so that students are
assigned enough modules to meet a specific credit load. This
would require students to provide an extended list of elective
modules so there are sufficient options.
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Fig. 2 Count of students who
experience one, two or three plus
conflicts with their timetable.
The majority of students do not
experience any conflicts
therefore the zero bar is omitted

Fairness and extended preferences

All the objective functions present in this paper are aggregate
measures so there is no concept of “fairness” when assigning
students. For example, if two students request two modules
then a solution where one student is assigned to two modules
and the other is assigned to none is equivalent in objective
value to a solution where both students are assigned to one
module each. The latter solution is arguably “fairer”.

A similar situation can happen with preferences. It is
possible that a solution could assign students so that some
students attend the mode they prefer for every class whilst
some students attend none of their classes in their preferred
mode. Currently, each student has a mode preference for all
modules. Themodel could be extended to consider a student’s

mode preferences for each module or even mode preferences
for each class. This extensionmakes the problemmore true to
life but exacerbates the issues surrounding fair assignments.

Controlling mode of attendance

Universitiesmaywant control overwhatmode students study
in. The mode that students attend their classes relates heavily
to where students choose to live, how busy the campus is,
and how resources are used on campus at the expense of the
university.

For example, if a university has on-site student accom-
modation they may aim to have a minimum percentage of
classes attended in-person. A university would do this to
make renting this accommodation a more appealing choice
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Fig. 3 Count of students who
have a certain percentage of
their classes met. They are
aggregated into ranges so that
the bars are an appropriate size.
The [90, 100] range is omitted
but contains the remaining
students

for students. On the other hand, a university may wish to
limit the percentage of teaching done in person. This may
be to reduce student density on campus, either to reduce the
spread of infection or to reduce the amount of energy and
money spent on lighting and heating buildings at the univer-
sity.

More parameters and constraints would need to be intro-
duced tomodel this extension but it is useful for a practitioner
to investigate the effect of changing these parameters.

Switching betweenmodes of study

A timetable where students and staff make multiple switches
between modes on the same day is undesirable. Multiple
switches could mean more traffic on and around the uni-
versity which has both a health and environmental impact

(potential spread of disease and increase in vehicle emis-
sions). Whilst many students only attend a single mode of
study or switch between the two modes only once, Table 5
shows that without any optimisation there are students that
switch between modes twice or more on the same day. An
extension to this model would be to have an objective to
minimise the number of switches that each student makes
in a working day. However, research currently underway
indicates that solving this problem is computationally chal-
lenging.

7.4 Solutionmethod improvements

As the focus of this paper was the explicit modelling of
the hybrid teaching feature of UCTTP, we utilised an exact
approach with small instances to test the model and demon-
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stratewhat happens to the solution if objectives are reordered.
This method is not an efficient way of solving this prob-
lem and better methods could be applied. For example, the
winner of the ITC-2019 uses a variety of techniques to find
solutions to a similar problem (Mikkelsen and Holm, 2022).
Other methods applied to similar problems have involved
local searches and simulated annealing (Babaei et al., 2015).
We are currently developing a method to find solutions for
particular orderings more efficiently and a method to explore
trade-offs between objectives. The exact solutions reported
in this work will be used to assess how well this method
performs.

8 Conclusion

Several gaps in the university module timetabling litera-
ture are identified at the beginning of this paper. To address
these gaps, this paper presents a formal and mathematical
description of a multi-objective post-enrolment timetabling
model with student sectioning and considerations for hybrid
teaching. The novel feature of this work is the explicit mod-
elling of hybrid classes, which have an in-person and online
element occurring at the same time. The assignment of stu-
dents in this model is demand-driven. Individual students
request modules they want to take and the model creates
a timetable that tries to satisfy these requests. It also tries
to ensure students attend their teaching in the mode that
they prefer. This is demonstrated in a series of computa-
tional experiments using modified benchmark data from the
2019 International Timetabling Competition. The modifica-
tions are so we can demonstrate the novel features under
a setting where these features would be most relevant (for
example, severely reduced capacity). In these experiments,
an exact lexicographic solution method is used to show that
solutions to this model depend on both the input data and the
ordering of the objectives. This observation shows that the
model can be used by practitioners who have different strate-
gic priorities and are based at different universities. Finally, a
list of potential extensions to thismodel is presented. Itemson
this list are starting points for future research. Exploring these
extensions would benefit both the timetabling community
and the wider large-scale integer optimisation community.
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