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Abstract. Optimal Camera Placement (OCP) is the process of finding
a subset of cameras that either maximises the coverage, such that the
cost of cameras is reduced, or minimises the total cost of cameras, such
that coverage constraints are satisfied. By adopting the latter formula-
tion, the OCP problem can be formulated as a Set Covering Problem
(SCP), as the concepts of the two problems are inherently similar. Until
recently, the literature has not explicitly discussed this similarity. Hence,
this paper examines the OCP problem by leveraging the formulation es-
tablished in prior research. Our focus lies in the practical application, as
we implement the model on all instances to derive meaningful insights.
Furthermore, we explore techniques from the SCP literature that can be
applied to address the OCP problem in future studies. In this study, we
address 69 problem instances, utilising a benchmark set generated by
other researchers. These instances were employed as part of the GECCO
2021 competition on the optimal camera placement problem and the uni-
cost set covering problem. We provide detailed results, and we conclude
with recommendations for future research.

Keywords: Combinatorial Optimisation, Set Covering Problem, Opti-
mal Camera Placement

1 Introduction

In recent years, establishing an optimal camera network for surveillance pur-
poses has been the subject of interest in several studies. This increased attention
is prompted by the worldwide spread of surveillance systems, which are being
employed to address various issues, including analysing crowd movements, mon-
itoring transportation systems, or simply observing certain places for general
purposes [13]. The idea of camera placement was first discussed in computa-
tional geometry in the 1970s by Chvátal [6]. The author’s widely known Art
Gallery Problem (AGP) has inspired numerous camera placement studies since
its introduction. AGP is an approach for placing guards in an art gallery, where
the goal is to minimise the number of guards, ensuring that every point in the
art gallery is covered by at least one guard. Transforming this idea to camera
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placement, guards become cameras, and the general goal is to select the smallest
subset of cameras that achieves full coverage.

Generally and more formally, Optimal Camera Placement (OCP) is the pro-
cess of finding a subset of cameras that either maximises the coverage, such
that the cost (or number) of cameras is reduced; or minimises the total cost (or
number) of cameras, such that coverage constraints are satisfied. When working
with the minimisation objective, the problem can be viewed as a Set Covering
Problem (SCP). However, the similarity between the two problems has not been
explicitly discussed in the OCP literature until recently [13]. Therefore, the aim
of our study is to explore the connection between the two problems and discuss
techniques from the SCP literature that can be applied to the OCP problem.

The rest of the paper is structured as follows: Section 2 provides a brief
summary of the OCP literature, discussing different techniques that have been
used to deal with the problem. This is followed by a description of SCP in
Section 3. Section 4 provides a detailed problem description and formulations of
our OCP problem. Then, a summary of the results of the problem is given in
Section 5. Finally, Section 6 concludes our study and gives a hint of what can
be done in future work.

2 OCP Literature

Inspired by the AGP, the use of optimal camera networks for surveillance has
increased in the past few decades in order to fully monitor different areas, in-
cluding public places, warehouses, buildings, and so on. The general goal is to
maximise coverage or to minimise the cost (or number) of cameras, given a
set of constraints [14]. When it comes to solving OCP, researchers have em-
ployed various tools. Some used exact methods to deal with the problem and
find optimal solutions, while others used heuristic methods to find near-optimal
solutions within a reasonable time. To elaborate on the latter, since the OCP is
an NP-hard problem [13, 14], finding optimal solutions can be time-consuming
for sufficiently large instances. Moreover, if a client’s priority is time rather than
solution quality, then it might be sensible to use heuristic methods instead of
exact methods to find a satisfactory solution in a reasonable amount of time.

The study in [11] employed three heuristic algorithms to tackle an OCP. The
authors focused on finding the best algorithm capable of solving OCP problems
for the surveillance of bridges. Their model aimed to minimise the total cost of
cameras, while ensuring that a minimum coverage level is satisfied. Moreover,
this study included different types of cameras to cover specific target points in
a three-dimensional space, resulting, for example, in an increase in the number
of camera locations, which can lead to the expansion of the size of the problem
instances. Because of that, the authors started by examining their OCP instance
using two popular heuristic methods, greedy and genetic algorithms, as well as
a novel heuristic method that is called the Uniqueness Score with Local Search
Algorithm (ULA). For the first method, the greedy algorithm allocates cameras
starting from the cheapest one and going up until it reaches the highest possi-
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ble number of cameras or achieves the minimum coverage level. At this point,
the algorithm halts and provides the proposed camera network. For the second
method, the genetic algorithms begins by randomly generating a population of
chromosomes, where each chromosome represents a camera placement. This pro-
cess continues until the minimum coverage level is reached by each chromosome.
Subsequently, a subset of chromosomes that satisfy the minimum coverage is se-
lected. Mutation and crossover operators are then applied to this subset, creating
new generations and ensuring that the solutions do not become stuck in a local
optimum. As demonstrated in [11], the last method, proven to be more effective
than the other two approaches, begins with the first solution of ULA, inspired
by the uniqueness score. It emphasises specific areas that are left uncovered by
other cameras. Subsequently, a local search is used to enhance the solution by
changing the selected cameras, aiming to find a new solution with a lower cost.

Another study in [22] also examined three different approaches for three OCP
cases, one of which utilised an exact method, while the other two employed
heuristic methods. In the first case, the objective was to maximise the coverage
within a limited budget. The authors formulated the optimisation problem as
a set covering problem and then applied dynamic programming to address it.
For the second case, the goal was to minimise the total cost while ensuring
full coverage constraints. Similar to the first case, the optimisation problem was
formulated as an SCP, and branch-and-bound algorithms were employed. This
involved relaxing the binary constraints, solving the new optimisation problem
using primal and dual simplex methods. A solution to the original problem would
be optimal if it satisfied the binary constraints. If not, further steps were taken
until a satisfactory solution was found. Lastly, the third case integrated the
previous two cases to form a multi-objective problem, aiming to both maximise
coverage and minimise cost. Instead of looking for one optimal solution, the
goal was to find a set of optimal trade-offs (Pareto optimal solutions). In this
context, ‘Pareto optimal’ refers to a set of selected candidate cameras, where no
feasible candidate cameras could improve coverage without worsening the cost
simultaneously. To address this problem, the authors suggested using a heuristic
method, specifically the multi-objective genetic algorithm NSGA-II [7].

Another method that was used to address an OCP problem is Differential
Evolution (DE). In [23], this heuristic method was utilised to improve the perfor-
mance of greedy algorithms in order to achieve full coverage. Their DE starts by
using an array containing a number of cameras, where each array represents an
individual within the population. The algorithm then uses the vector differential
of two individuals from the previous generation to create a new individual. Con-
sequently, the algorithm continues to generate improved individuals compared
to those in the previous generations.

The work in [4] used a variant of DE, called set-based DE, inspired by the
study in [15], to address their OCP problem. In contrast to the study in [23],
the authors focused on minimising the number of cameras (i.e., cost reduction)
while ensuring complete coverage. The difference between set-based DE and
the original DE lies in the fact that the former is primarily utilised to solve
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permutation-based problems, whereas the latter can be applied to solve general
problems (including set-based problems).

Other methods employed in recent literature include dynamic algorithms [2],
simulated annealing [17], greedy algorithms [19] and hill climbing [1]. While
some OCP studies have formulated their problem as an SCP, the study in [12]
argues that almost none of these studies have fully exploited this similarity or
employed techniques from the SCP literature to address the OCP problem. As
a result, many techniques employed in the SCP literature have not yet been
utilised to address the OCP problem. This suggests potential opportunities for
contributions that can make a difference in the OCP field.

3 Set Covering Problem (SCP)

The Set Covering Problem (SCP) is a popular combinatorial optimisation prob-
lem classified as NP-hard [10]. Throughout the years, numerous studies have
explored the SCP to tackle a diverse range of real-world applications. These
include solving transit crew scheduling problems [8], optimising transit crew
scheduling design with multiple objectives [16], finding optimal quantity and lo-
cation of gas detectors [20], assigning fire stations with ladder trucks [21], and
scheduling wireless sensor networks [24], among others. For more information
regarding the SCP and its applications, readers are advised to refer to [5].

A brief definition of SCP would be: given a zero-one matrix, the goal is to
obtain a subset of columns that minimises the total cost associated with the
selected columns, ensuring that all the rows of the matrix are covered by these
columns [18]. To elaborate on that, consider matrix A with three rows and three
columns:

A =

 1 0 0
0 0 1
1 1 0


In this matrix, the value 1 indicates that a given row is covered by a given
column, and 0 otherwise. For instance, element a11 shows that row 1 is covered
by column 1. While element a33 shows that row 3 is not covered by column 3.
If each column is associated with a specific cost, the objective of SCP would be
to find a subset of columns that minimises the total cost while ensuring that all
the rows of the matrix are covered by this subset. For example, if the cost is the
same for all columns, an optimal solution could be selecting both columns 1 and
3, as this combination covers all given rows.

Formally, given a finite universal set U = {1, 2, . . . , n} and a family of subsets
S = {S1, S2, . . . , Sm} where each Si is a subset of U , and each subset Si has
an associated cost ci, the set covering problem is to find a minimum-cost subset
C ⊆ S such that the union of the selected subsets covers the entire universal
set, i.e.,

⋃
Sj∈C Sj = U . The goal is to minimise

∑
Si∈C ci, the total cost of the

selected subsets.
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From an optimisation perspective, the study in [13] asserts that the Optimal
Camera Placement (OCP) can be reformulated as a set covering problem after
certain pre-processing steps. In this context, the pre-processing phase involves
the transformation of the OCP problem into a visibility matrix. This matrix
matches each location in the surveillance area with every possible configuration
(position and orientation) of the given cameras, resulting in a 0-1 matrix sim-
ilar to matrix A. To elaborate, columns in this matrix represent the cameras,
and rows represent the locations that need to be covered by the cameras. The
objective of the transformed OCP problem is to find a subset of cameras that
minimises the cost, ensuring that all the specified locations are covered by this
subset. In essence, this conversion enables the application of SCP methodologies
to address the OCP challenge effectively.

In the study conducted in [13], an in-depth illustration is provided regarding
the possibility of using methods from the SCP literature and applying them to
OCP problems. The study introduces different heuristic and metaheuristic meth-
ods that were employed to address SCP, and consequently, these methods could
be adapted for solving OCP problems. For instance, greedy algorithm is one of
the heuristic methods utilised in the SCP literature to address the problem’s
NP-hard nature. As will be pointed out later, the greedy algorithm was also
used in the OCP literature in recent years. Despite being tailored specifically
for OCP problems, the main conceptual framework remains the same for both
domains. Another approach discussed in this study involves the work of [9], who
utilised the Row-Weighting Local Search (RWLS) algorithm for a special type of
SCP known as the Unicost SCP. According to [13], this approach has not been
explored in the OCP literature, and questions arise regarding its potential effi-
ciency in solving OCP problems. In a subsequent study [12], different approaches
from both OCP and SCP literature were employed on real OCP cases. Notably,
they utilised the RWLS algorithm and demonstrated its efficacy in solving OCP
problems. This illustrates the possibility of leveraging techniques from the SCP
literature to effectively address challenges in the OCP domain.

4 Problem Description and Formulation

In this study, we address 69 three-dimensional problem instances, comprising 32
academic problem instances and 37 real-world instances. These instances were
utilised as part of the GECCO 2021 competition on the optimal camera place-
ment problem and the unicost set covering problem [3]. The academic problem
instances represent different sizes of rectangularly modelled rooms, where ceil-
ings are used for camera placement. On the other hand, the real-world instances
represent diverse sizes of actual urban spaces, with the walls of multiple buildings
serving as potential camera locations.

For each problem instance, a set of camera configurations (locations and
orientations coordinates), referred to as candidates, is provided. Additionally, a
grid containing a set of points in three-dimensional space, denoted as samples,
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must be covered by a subset of candidates. For each sample, there exists multiple
candidates capable of overseeing it.

Consider the example with two samples (a and b) and four candidates (1,
2, 3, and 4). Suppose sample a can be covered by candidates 1, 2, and 4, while
sample b can be covered by candidates 2 and 3. We can create a visibility matrix
A for this example, where the first row represents sample a, the second row
represents sample b, and columns represent candidates 1, 2, 3, and 4. Matrix A
is presented below.

A =

[
1 1 0 1

0 1 1 0

]

The objective of the OCP problem is to cover all the given samples by identi-
fying a subset of candidates that achieves this goal at the minimum cost. In the
presented OCP example, assuming equal costs for each candidate, the optimal
solution would be to select candidate 2. This choice is optimal because candi-
date 2 is the only one overseeing both samples, enabling the coverage of both
samples with a single candidate. Other solutions, such as candidates 1 and 3 or
candidates 3 and 4, would require paying for two candidates to cover the two
samples. However, the optimal solution, in this case, is achieved by selecting just
one candidate (i.e., candidate 2).

4.1 Mathematical Formulation

As previously mentioned, the OCP problem shares similarities with the set cov-
ering problem. Consequently, we model the OCP problem as an SCP. The for-
mulation involves a binary matrix A (aij = 1 if row i can be covered by column
j, and 0 otherwise) with m rows and n columns, where each column j is assigned
a specific cost cj . The mathematical model is expressed as follows:

minimise

n∑
j=1

cjxj

subject to

n∑
j=1

aijxj ≥1, ∀i ∈ {1, . . . ,m}

xj ∈ {0, 1}, ∀j ∈ {1, . . . , n}

Here, xj = 1 if column j is selected, and xj = 0 otherwise. The objective function
minimises the total cost, and the first constraints ensure that each row i is
covered by at least one selected column j.

Now, for our specific OCP problem, all cameras have the same cost [3]. This
simplification transform our SCP model into a Unicost SCP (USCP), where the
cost parameter cj is omitted:
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minimse

n∑
j=1

xj

subject to

n∑
j=1

aijxj ≥1, ∀i ∈ {1, . . . ,m}

xj ∈ {0, 1}, ∀j ∈ {1, . . . , n}

In this formulation, xj = 1 if candidate j is included in the solution, and xj

= 0 otherwise. The objective remains to minimise the total number of selected
candidates, ensuring that each sample is covered by at least one candidate. This
transition to a USCP model simplifies the objective by focusing on minimising
the number of candidates, each having an equal cost, while maintaining the
essential constraints for effective camera placement in the OCP context.

5 Computational Results

For this study, we utilised the PuLP1 package in Python to build the model,
which was then solved using Gurobi, a commercial Linear Programming solver.
Experiments were conducted on an Intel(R) Core(TM) i5-8500T CPU@ 2.10GHz
2.11GHz with 8.00GB RAM. A time limit of 3 hours was imposed on each prob-
lem instance, encompassing both model building and problem solving. The re-
sults for both the academic and real-world problem instances are presented in
Table 1 and Table 2, respectively. For instances where obtaining the optimal
solution was unattainable, we provide the upper and lower bounds along with
the calculated optimality gap using the formula:

Gap =
|UB − LB|

|UB|

where UB is the upper bound, and LB is the lower bound. In cases where the
optimal solution was found, both the upper and lower bounds will have the same
value. Instances where no results were produced due to insufficient memory or
time limitations are denoted by a dash ‘-’ in the respective table entries.

As seen in both tables, there are many cells filled with a dash ‘-’, mostly be-
cause the three-hour time limit was reached before completing the model building
stage, rendering it impossible to solve the problem. This issue arises mainly due
to the substantial size of these problem instances, requiring hours or even days
solely for model building. Another observation is that, even when the model
is built for some instances, an optimal solution is not always achieved. In such
cases, having the upper and lower bounds is particularly valuable, offering useful
information about how close we are to reaching the optimal solution. For some
instances, like RW 18, it appears that we are quiet close to the optimal solution.
For these, extending the runtime may yield the optimal solutions. However, there

1 https://pypi.org/project/PuLP/
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Table 1: Results for academic problem instances. m is the number of samples,
n is the number of candidates, UB is the upper bound, LB is the lower bound,
Gap is the optimality gap, and Time is the time taken in seconds

Instance m n UB LB Gap Time

AC 01 605 2904 7.00 7.00 0.00% 9.33
AC 02 2205 10584 4.00 4.00 0.00% 140.30
AC 03 4805 23064 3.00 3.00 0.00% 1411.43
AC 04 8405 40344 5.00 5.00 0.00% 7542.09

AC 05 13005 62424 - - - -
AC 06 18605 89304 - - - -
AC 07 32805 157464 - - - -
AC 08 51005 244824 - - - -
AC 09 73205 351384 - - - -

AC 10 605 2904 20.00 17.37 10.00% 10800.00
AC 11 2205 10584 72.00 52.00 26.39% 10800.00
AC 12 4805 23064 168.00 109.81 34.52% 10800.00
AC 13 8405 40344 344.00 187.18 45.35% 10800.00
AC 14 13005 62424 723.00 0.00 100.00% 10800.00

AC 15 18605 89304 - - - -
AC 16 32805 157464 - - - -
AC 17 51005 244824 - - - -
AC 18 73205 351384 - - - -
AC 19 99405 477144 - - - -
AC 20 129605 622104 - - - -
AC 21 163805 786264 - - - -
AC 22 202005 969624 - - - -
AC 23 244205 1172184 - - - -
AC 24 290405 1393944 - - - -
AC 25 340605 1634904 - - - -
AC 26 394805 1895064 - - - -
AC 27 453005 2174424 - - - -
AC 28 515205 2472984 - - - -
AC 29 581405 2790744 - - - -
AC 30 651605 3127704 - - - -
AC 31 725805 3483864 - - - -
AC 32 804005 3859224 - - - -

are instances, such as AC 13, where the gap is notably large, indicating the need
for an extended runtime to solve them.

If we take a look at the first problem instance in Table 1, AC 01 contains 605
samples and 2904 candidates. The solution for this problem instance involved
using 7 candidates to cover all 605 samples, and the computation took 9.33 sec-
onds. Figure 1 visualises this problem instance, with yellow points representing
all candidates and blue points representing samples that must be covered by a
subset of those candidates. The solution of AC 01 is also depicted in Figure 1,
where 7 yellow points on the graph represent the optimal locations of the can-
didates that cover all 605 samples.

Similar to AC 01, we visualise another problem instance in Figure 2, namely
RW 22. This real-world instance contains 17,203 candidates and 83,835 samples.
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Table 2: Results for real-world problem instances. m is the number of samples,
n is the number of candidates, UB is the upper bound, LB is the lower bound,
Gap is the optimality gap, and Time is the time taken in seconds

Instance m n UB LB Gap Time

RW 01 153368 32430 - - - -
RW 02 285698 56132 - - - -
RW 03 161099 32040 - - - -
RW 04 304655 59137 - - - -
RW 05 206900 34568 - - - -
RW 06 380420 65691 - - - -
RW 07 214889 42046 - - - -
RW 08 382651 77986 - - - -
RW 09 206816 39003 - - - -
RW 10 368114 71323 - - - -

RW 11 82437 15632 316.00 309.88 1.90% 10800.00

RW 12 136555 28109 - - - -
RW 13 293138 61741 - - - -

RW 14 81062 14916 337.00 334.77 0.59% 10800.00

RW 15 141309 27008 - - - -
RW 16 105829 21063 - - - -
RW 17 180453 35635 - - - -

RW 18 79947 14423 338.00 336.65 0.30% 10800.00

RW 19 141114 26483 - - - -
RW 20 332300 50284 - - - -
RW 21 654068 90050 - - - -

RW 22 83835 17203 399.00 392.93 1.50% 10800.00

RW 23 142326 31038 - - - -
RW 24 201967 33880 - - - -
RW 25 375680 59851 - - - -
RW 26 105566 18043 - - - -
RW 27 181090 32669 - - - -
RW 28 136755 27838 - - - -
RW 29 273964 49267 - - - -
RW 30 263518 49354 - - - -
RW 31 472660 87248 - - - -
RW 32 124289 30189 - - - -
RW 33 229231 55000 - - - -
RW 34 134479 27329 - - - -
RW 35 238546 47590 - - - -
RW 36 135043 28162 - - - -
RW 37 238492 50702 - - - -

A feasible solution was obtained with an upper bound of 399, a lower bound of
392.93, and a gap of 1.5%. The visual representation of this problem’s solution
can be observed in the same figure.

Addressing the time issue is paramount for achieving improved results. One
approach involves tackling the size of the problem; for instance, reducing it by
eliminating unnecessary sets from the visibility matrix. Additionally, exploring
different optimisation methods could be beneficial, such as employing multi-
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Fig. 1: Visualisation of the AC 01 problem instance (left) and its optimal solu-
tion (right), where yellow points represent candidates and blue points represent
samples to be covered

Fig. 2: Visualisation of the RW 22 problem instance (left) and its feasible solu-
tion (right), where yellow points represent candidates and blue points represent
samples to be covered

objective optimisation. In this approach, the main objectives would involve max-
imising area coverage while minimising the number of cameras. Another viable
approach is the utilisation of heuristic techniques. By studying various heuristic
methods employed in the SCP literature and applying them to our OCP prob-
lem instances, we can potentially obtain near-optimal results within a reasonable
amount of time.

6 Conclusions

OCP problem involves determining the optimal locations and orientations for a
set of cameras, with the objective either being to maximise the coverage of a given
surveillance area or to minimise the total cost or number of selected cameras.
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Although this problem has been formulated in a manner resembling the SCP,
this similarity has only recently been explicitly discussed in the literature.

This paper studied the OCP problem by exploring its literature and under-
standing its relationship with SCP. Given that OCP is anNP-hard problem, and
the majority of problem instances are large, relying solely on exact methods did
not provide solutions for all instances. Therefore, addressing the NP-hard na-
ture of the problem becomes crucial for future work. Potential strategies include
reducing the size of problem instances, and/or resorting to heuristic techniques.
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