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ABSTRACT

NorthWest Air Ambulance (NWAA) provides helicopter emergency
medical service to the Northwest of England. Their three healthcare
teams provide their service from two bases with three helicopters.
They face some research questions to understand the impact of the
air ambulance base locations and the healthcare teams’ composition
on their services. This paper aims to address those questions by
modelling their operations into a location-related decision prob-
lem. Then we developed a matheuristic approach to solving the
model and generated many realistic instances from historical data
to validate our proposed approach’s robustness. With the help of
our experimental results, we examine the e!ect of adjusting air
ambulance base locations as well as team con"gurations on the
service quality measures to answer the research questions.
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1 INTRODUCTION

The focus of this paper is a real-life research problem originated
at and posed by an organisation called North West Air Ambulance
(NWAA). Funded by charitable donations, NWAA are dedicated to
providing emergency medical services in the Northwest of England
in the Greater Manchester, Lancashire, and Cumbria regions. They
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aim to take advanced healthcare to the spot to improve chances of
survival and reduce the risk of long-term injury. The organisation
currently consists of six vehicle assets, three air ambulances (i.e.,
helicopters), and three rapid response vehicles, and can serve more
than 2,000 incidents per year. There are three advanced healthcare
teams and two base sites in NWAA; two healthcare teams are lo-
cated near Manchester at Barton and one at Blackpool. The team,
based in Barton, is composed of a highly trained doctor and spe-
cialist paramedics. The other two teams are based in Blackpool
and Barton and are composed of only paramedics. Although the
paramedics working for NWAA are more experienced than the
usual paramedics, their emergency response capabilities are limited
compared to a medical doctor. Each team may be assigned to a
single helicopter, so no more than three NWAA assets are in use at
any given time instance. A list of the existing helicopters and the
associated team is provided below:

• Helicopter H08 is Paramedic crewed based at Blackpool and
supported by HX002 Rapid Response Vehicle
• Helicopter H72 is Doctor crewed based at Barton and sup-
ported by HX001 Rapid Response Vehicle
• Helicopter H75 is Paramedic crewed based at Barton and
supported by HX003 Rapid Response Vehicle

As a charity, NWAAwould like to ensure that the donated money
is used appropriately. Therefore, NWAA are keen to understand
the impact of the air ambulance base locations and the healthcare
teams’ composition on their services. In this paper, we leverage the
well-studied domain of facility location models and aim to address
the following research questions posed by NWAA:

(1) How to identify the best candidate base locations and com-
pare their performances with the existing base locations?
How does deploying an additional base improve the quality
of service?

(2) How to identify the e!ect of the teams’ capabilities on the
e#ciency of the operations? How does employing more
doctors improve the quality of service?

1.1 Facility Location Models for Healthcare

Facility location models have become highly relevant in enhancing
healthcare services/systems’ performance as they help to attain
crucial design objectives of minimising operating costs or max-
imising social bene"ts. Furthermore, they can be used to exam-
ine service usability issues, evaluate the e!ectiveness of existing
location based decisions, and suggest better alternatives to the
current solutions [16]. As a result, the diverse application of such
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models is prevalent in the literature (e.g., inclusion of explicit geo-
graphical conditions in healthcare planning [10], determining lo-
cations of ambulances [17], trauma treatment resources [6], organ
transplantation facilities [21], placement of blood banks [12], emer-
gency medical service designs [4], preventive healthcare network
design [23], diagnostic test laboratories [19], design of hierarchical
health service network [22], layout planning of large and com-
plex hospitals [11], optimisation of helicopter rescue operation [13]
etc.). Notably, due to computational intractability, previous studies
usually tackled real-world healthcare facility problems through
heuristic/metaheuristic approaches. For a survey of healthcare fa-
cility location problems, readers are referred to [1]. Besides facil-
ity location models, there are some studies [7, 9, 14, 15] on the
simulation/investigation of di!erent aspects of helicopter based
emergency medical services but we "nd them to be out of the scope
of this paper.

1.2 Our Contributions

This study makes the following key contributions. Firstly, we model
the helicopter operations of NWAA as a capacitated facility location-
allocation variant (Section 2). Our model considers not only base
locations but also the number and the compositions of the teams
at each base. Then, we construct realistic problem instances that
mimic the NWAA activity pattern/distribution by leveraging three
historical databases (Section 3). Furthermore, to e!ectively solve
such practical instances, we develop a matheuristic approach by
embedding an exact method inside a hill-climbing structure (Sec-
tion 3) and examine its robustness (Section 4). It enables us to
examine the model outputs while varying the input parameters in
accordance with the research questions (Section 4) and o!er our
"ndings/recommendations (Section 5). Thus this paper combines
di!erent aspects of the well-studied facility location models to per-
form a cost-e!ectiveness analysis of the model that suits the NWAA
operations that is not directly comparable to previous studies on
healthcare facility problems.

2 PROBLEM DESCRIPTION AND
MATHEMATICAL FORMULATION

From historical records, we "nd that NWAA rarely rejects a call
because of serving another operation. Moreover, the helicopters
used by NWAA can reach speeds of 150mph, allowing them to reach
any incident from a base located in the region’s central part within
30 minutes. Because of these reasons, we aim to "nd base locations
that will minimise the average %ying distance without consider-
ing the speci"c time (or time window) to serve each incident. We
can formulate this problem as a variant of the capacitated facility
location-allocation problem. To be more exact, it is a special case of
the Capacitated Multi-facility Weber Problem (CMWP). In CMWPs,
the aim is to locate a prede"ned number of facilities in an Euclidean
space that will satisfy customers’ demand while minimising the
total transportation cost. In our problem, we consider each incident
(i.e., customer) has unit demand, and the capacity of the bases (i.e.,
facilities) depends on the number of teams located at each base.
Besides, since some incidents require advanced skills, a subset of
incidents can only be served by a team with a doctor. As a result,
we assume there are two capacities for each base: the number of

incidents that require a doctor and the total number of incidents.
We also assume each base can serve up to certain percentage of the
total incidents. This makes the problem slightly di!erent than the
classical CMWPs since the total supply exceeds the total demand.
For the given indices, parameters, and variables below, we develop
the following mathematical model.

Sets and Indices
8 ∈ � bases
9 ∈ � incidents
� ′ ⊂ � incidents requiring teams with a doctor

Parameters
a9 = (0 91, 0 92) coordinates of incident 9
B8/B
′
8 total / {doctor requiring} number of incidents

that can be served by base 8
3 (8, 9) distance between base 8 and incident 9

Variables
x8 = (G81, G82) coordinates of base 8
F8 9 1 if incident 9 is assigned to base 8; 0 otherwise

Mathematical Modelling

min
∑

8∈�

∑

9 ∈�

F8 93
(

x8 , a9
)

(1)

s.t.
∑

8∈�

F8 9 = 1 ∀9 ∈ � (2)

∑

9 ∈�

F8 9 ≤ B8 ∀8 ∈ � (3)

∑

9 ∈� ′

F8 9 ≤ B ′8 ∀8 ∈ � (4)

F8 9 ∈ {0, 1} ∀8 ∈ � ; 9 ∈ � (5)

Here, objective function in equation 1 minimises the total dis-
tance between the incidents and the bases that serve the incidents.
Constraint set 2 force that every incident is served by one and only
one base. Constraint sets 3 and 4 ensure that the number of all
incidents and incidents requiring a doctor served by each base do
not exceed the capacities of the bases, respectively. These capac-
ity constraints ensure all teams’ participation, which eventually
helps to reserve the doctors for severe cases. Constraint set 5 de"ne
the domain of variablesF8 9 . It should be noted that, although the
decision variables used in this model are the base locations and
allocations of each incident to a particular base, in the context of
this paper, we are only concerned with the base locations.

In this problem, for 3
(

x8 , a9
)

, we use an Euclidean distance func-
tion since the helicopters can %y directly to the incident locations.
However, when the distance function is Euclidean, the objective
function of this model is neither concave nor convex [8]. Although
a few methods solved this problem exactly (see [3, 18]) or approx-
imately (see [2, 5]), the size of the problems that the algorithms
proposed in these papers can solve are quite limited compared
to our instances. To have not necessarily optimal but good solu-
tions, we look for heuristic approaches and decide to solve the
location and allocation problems iteratively similar to the proposed
approach of Cooper [7]. In this approach, we start from a set of
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random base locations. When we "x the location variables, G8 , the
problem becomes a variant of the network %ow problem with unit
%ows. We solve this problem exactly with a mathematical solver.
The solution to this problem gives us the allocations of the incidents
to each base. Fixing the allocation variables,F8 9 , decomposes the
problem to (single facility) Weber Problems for each base. We utilise
Weiszfeld’s procedure [20] to "nd locations minimising the total
distance between each base and incidents assigned to them. We
repeat this algorithm multiple times, starting from random initial
locations to avoid getting caught up in locally optimal solutions. A
more detailed description of this algorithm and its pseudo-code is
given in Section 3.

3 METHODOLOGY

In this section, we develop an e#cient approach for solving the
problem formulated in the previous section by combining heuristic
and exact techniques. In addition, we discuss our steps involved in
the generation of real-world instances from historical databases.

3.1 Matheuristic Approach

It is not possible to obtain optimal solutions using an exact method
for the formulation presented in Section 2 on realistic instances
within a reasonable time. So we devise an e#cient matheuristic
approach (Algorithm 1 and Figure 1) by adapting Cooper’s iterative
location-allocation algorithm [7, 8] that acts like a hill-climber from
a high-level view. It starts with random base locations and the "nal
solution depends on the initial locations. Before entering the main
loop, we ensure the feasibility of the initial solution (line 5) by
checking whether each base has been assigned to serve at least
one incident from the current allocation. The algorithm alternates
between location and allocation steps until a local optimal solution
is found. In the location step (line 13), we update the location of
each candidate base by the geometric median of the locations of
incidents currently allocated to that base (line 3 of Algorithm 2)
following Weiszfeld’s iterative procedure [20]. However, in the
allocation step (line 14), unlike the Cooper’s algorithm which uses
only one type of demand, we consider incidents that require an
intervention of a team with a doctor and all incidents separately.
We solve this problem by using a mathematical model given in
Section 2 by "xing variables G8 to current candidate base locations.
Thus we select the optimal allocation within a sub-portion of the
search space to maintain the time-e#ciency. The robustness of
this method in regards to withholding variation in the problem
instances is examined in Section 4.3.1.

3.2 Construction of Datasets

Three historical databases as reported in Table 1 are utilised in
this paper. We use HEMS database to understand the nature of
incidents followed by NWAA and sample similar incidents from
999 and TARN databases to prepare two datasets. We aim to obtain
robust solutions that can withstand variation in data, variables or
assumptions. To accomplish this, under each dataset, we construct
100 di!erent problem instances of 4,000-5,000 incidents chosen
randomly following the same sampling criterion. Thus we get 100
di!erent solutions for each dataset which enables us to examine

Algorithm 1Matheuristic Approach

Input:<0G�C4A : the maximum number of iteration; =�0B4B: the
number of bases; C40<�>=5 86: the team con"guration; ?A>1�=BC :

the instance to be solved

1: <>34; ← create a model of Section 2 with =�0B4B , C40<�>=5 86

and ?A>1�=BC
2: repeat

3: 2DA!>2 ← randomly initialise =�0B4B locations
4: 2DA�;;>2 ← "x the location related decision variables x to

2DA!>2 and then solve<>34; by an exact method to get the
allocation

5: until 2DA!>2 and 2DA�;;>2 constitute a feasible solution
6: 14BC!>2 ← 2DA!>2 /*stores the best locations and returned as output*/

7: 14BC�;;>2 ← 2DA�;;>2 /*stores the best allocation and returned as

output*/

8: 14BC(2>A4 ← evaluate the objective function (eqn. 1) using
14BC!>2 and 14BC�;;>2 /*stores the best score and returned as output*/

9: 2DA�C4A ← 0 /*iteration counter*/

10: repeat

11: 2DA�C4A ← 2DA�C4A + 1

12: ?A4E�;;>2 ← 2DA�;;>2

13: 2DA!>2 ← Update-Base-Locations(2DA!>2 , 2DA�;;>2) /*the

location step (Algorithm 2)*/

14: 2DA�;;>2 ← "x the location related decision variables x to
2DA!>2 and then solve<>34; by an exact method to get the
allocation /*the allocation step*/

15: 2DA(2>A4 ← evaluate the objective function using 2DA!>2

and 2DA�;;>2
16: if 2DA(2>A4 is better than 14BC(2>A4 then
17: 14BC(2>A4 ← 2DA(2>A4

18: 14BC!>2 ← 2DA!>2

19: 14BC�;;>2 ← 2DA�;;>2

20: end if

21: until 2DA�C4A > <0G�C4A or 2DA�;;>2 has not been changed
w.r.t. ?A4E�;;>2

22: return 14BC!>2, 14BC�;;>2, 14BC(2>A4

Algorithm 2 Update-Base-Locations

Input: 2DA!>2: candidate base locations; 2DA�;;>2 : incidents
currently allocated to each base in 2DA!>2

1: for each base 1 do

2: % ← a set of coordinates of incidents from 2DA�;;>2 currently
allocated to 1

3: Update the location of1 in 2DA!>2 to be the geometricmedian
of all coordinates in %

4: end for

5: return 2DA!>2

the robustness of our methodology. Below we discuss our approach
to generate the two datasets.

Dataset1

It includes daytime (from 8:00 AM to 20:00 PM) incidents from
999 database that are not necessarily served by NWAA but can
meet NWAA dispatch criteria. It follows the similar distribution
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Start Matheuristic

Randomly initialise
current base locations

Calculate allocation
for current bases

Store current base and allo-
cation as the best solution

Update base locations based
on current allocations

Calculate allocations
for current bases

current solution better
than best solution?

Store current base and allo-
cation as the best solution

terminate?

Return the best solution

(Location step: Heuristic)

(Allocation step: Exact)

~

~

=

=

Figure 1: A high-level !owchart of our matheuristic approach.

Table 1: Databases used for construction of problem in-

stances

Name #Entries Content info.

HEMS 4,126 Calls the NWAA attended / set o! to

999 1,528,279 999 calls from the north west UK

TARN 15,051 Data on moderately and severely injured patients

of the HEMS database in terms of the call category, AMPDS code
reporting, and healthcare teams (Figure 2). We use the roulette-
wheel random selection mechanism to select call category, AMPDS
code, and healthcare team for an incident following this distribu-
tion. Moreover, to follow the HEMS incidents’ spatial distribution
(Figure 3) on the map, we split the map area under consideration
into several square regions of similar sizes and ensure the inclusion
of 999 incidents from each region, maintaining a similar percentage
with HEMS. Each square region’s size is a design parameter that
is tuned to determine the best possible outcome. Following the
location distribution will result in a dataset that re%ects the general
characteristics of the locations served by NWAA, avoiding the clus-
tering of incidents on highly populated cities, such as Manchester
and Liverpool.

Dataset2

Here the goal is to construct a dataset that includes the TARN
missions NWAA could have attended. This dataset includes daytime
incidents and follows a similar distribution of the HEMS database
in only healthcare teams as the TARN database does not have call
category and AMPDS code "elds. Also, the locations are processed
in a similar way as in Dataset1. Moreover, we only consider themost

Figure 2: Distribution of top 30 AMPDS code reporting, call

category and vehicle assets from HEMS database. The vehi-

cle assets H72 and HX001 represent healthcare team with a

doctor

severe incidents as NWAA considers severity as the number one
priority. This can be identi"ed by looking at the patients with an
ISS ‘Injury Severity Score’ score of 15 and above, which constitutes
a major trauma.

4 EMPIRICAL STUDY

In this section, we discuss di!erent aspects of our experimentation
with our matheuristic approach conducted on two datasets, each
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Figure 3: Locations of incidents from HEMS database

having 100 problem instances. We implemented our methods using
C# and used IBM ILOG CPLEX 12.10 as the mathematical solver.

4.1 Experimental Settings

Our analysis considers base locations and the number and con-
"gurations of the teams at each base. We assumed that there are
three teams available, and we distribute them to 1, 2, or 3 di!erent
airbases. Also, we consider di!erent team con"gurations varying
the number of doctors in each team. Thus, we ended up with seven
distinct team con"gurations provided in Table 2. In these team con-
"gurations, each base may contain, a number of teams each with a
doctor (D, DD, DDD, number of D shows the number of teams), a
teamwith only paramedics (P) and two teams one with a doctor and
another without a doctor (DP). Our model aims to minimise total
%ight distance while serving all incidents of the problem instance.

When we assign incidents to teams, we apply the constraint that
if an incident requires a doctor, it can only be served by a team
with a doctor; otherwise, the incident can be served by a team with
or without a doctor. Besides, we assume every team can serve a
"xed percentage (we use 40% in this study) of the incidents at most
(constraint 3 in Section 2). This constraint ensures the participation
of each team which helps to reserve the doctor team for severe
cases. The percentage of the incidents requiring a doctor may be
more than the number of teams with a doctor in some instances.
To have feasible solutions, in those instances, if required, we relax
the number of incidents that can be served by a team with a doctor
but force them also to serve only incidents that require a doctor.
And for the same reason, we have not created any con"guration
with only paramedic teams.

For each problem instance, we run our matheuristic method 30
times starting from a di!erent initial solution and take the base

locations that achieves the best objective (out of 30) as the solution.
Thus for each (dataset, team con"guration) combination, we get 100
solutions (i.e., one for each instance). To verify the robustness of
our approach, we also evaluate the objective values of a particular
solution for the other 99 problem instances which were not used
to obtain it. We discuss this in more details in Section 4.3. Table 3
summarises important parameters of our approach.

4.2 Performance Measure

In our analysis, we use the total %ight distance (nautical miles or
NM) and total %ight time (hours or h) as the performance metrics.
While calculating the %ight time, we assume that the helicopter
%y with a speed of 134.691 knots (i.e., 155mph). Also, we consider
a "xed overhead for every incident spent for take-o!s and land-
ings. We calculate total %ight distance and total %ight time on each
problem instance for NWAA’s existing base locations and team
con"guration (i.e., two teams at Barton and one in Blackpool, 1
doctor in Barton only) use these values as a basis for comparing
the relative performance of each scenario listed in Table 2.

4.3 Experimental Results

Here we present the results of our matheuristic approach across
100 problem instances of the two datasets for di!erent team con-
"gurations listed in Table 2 after an examination of its robustness.
However, we defer the discussion of our "ndings/recommendation
derived from these results to the next section (i.e., Section 5).

4.3.1 Validation of Robustness. To validate our matheuristic ap-
proach’s robustness, we would like to examine the di!erence in
its performance while varying incidents of the problem instance.
To accomplish this goal, randomly split our 100 instances in each
dataset into the train (80%) and test (20%) sets similar to a machine
learning approach. We obtain 80 sets of base locations by running
our method on each train instance and summarise them into one
set of base locations by taking the geometric median of the 80 can-
didates for each base. We refer to this single solution as the trained
model. We perform these steps for every team con"guration. Then
we summarise the objective values of the trained model separately
for 80 train instances and 20 test instances using one boxplot for
each team con"guration in Figure 4. To make the comparison more
comfortable, we normalise all the objective values for a particu-
lar instance obtained across di!erent team con"gurations using
the minimum and maximum. We "nd each box to be very narrow,
implying that the trained model’s performances across di!erent
instances are quite similar. More importantly, we see that each box-
plot of the train results is almost identical to its counterpart in the
test results. The same holds for the relative position of each pair of
boxplots. In subsequent sections, we see that all the base locations
generated by our method across di!erent instances are positioned
in close proximity on the map. All these observations indicate our
approach’s robustness in terms of its %exibility to changes in the
incidents.

4.3.2 Results for Dataset1. Dataset1 represents daytime 999 calls
that follow the distribution of call category, AMPDS code reporting,
healthcare teams, and location from the HEMS database. Figure 5
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Table 2: Seven team con"gurations used in this analysis

con"guration base #1 base #2 base #3

DP|P 2 teams one with a doctor 1 team
D|P|P 1 team with a doctor 1 team 1 team
DP|D 2 teams one with a doctor 1 team with a doctor
D|D|P 1 team with a doctor 1 team with a doctor 1 team
DDD 3 teams each with a doctor
DD|D 2 teams each with a doctor 1 team with a doctor
D|D|D 1 team with a doctor 1 team with a doctor 1 team with a doctor

Train set Test set

D
at
as
et
1

D
at
as
et
2

Figure 4: Performance of the trained model on randomly chosen 80 train and 20 test instances

Table 3: Important system parameters

Parameter Value

Airbases 1-3 (see Table 2)

Team con"gurations 7 (see Table 2)

Repeated runs 30

Max. iterations (<0G�C4A ) 100

Max. incidents served by any team (B8/B ′8 ) 40%

summarises our obtained results for Dataset1. In parts (a)-(g), we vi-
sually locate all 100 sets of base locations generated by our method
on the map for each team con"guration. Moreover, part (h) shows

the total %ight distances and %ight time. To calculate the %ight
distance for a particular team con"guration from 100 di!erent solu-
tions, we generate a 100X100 matrix where the cell (8, 9 ) shows the
total distance incurred by the solution generated using 8Cℎ instance
but evaluated on the 9Cℎ instance. Then we transform this matrix
into a vector of dimension 100 by averaging all values in the same
column. Finally, we average 100 values in the vector to calculate the
total %ight distance (reported in part (h) of Figure 5) that gives us a
robust estimation of the base locations for a particular team con"g-
uration considering all instances. We see that the di!erent locations
(i.e., one for each instance) identi"ed for a team usually located to
each other’s proximity implying our approach’s robustness. The
high population density in Manchester and Liverpool dominates
base locations identi"ed in the south, but the base in Liverpool is
located to the east of its centre to cover a larger demand area. The
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rent con"guration

Figure 5: Visual depiction of all optimised base locations for

di$erent team con"gurations (parts (a)-(g)) obtained on the

100 instances of Dataset1 and their performance compari-

son (part (h))

base locations advised in the north are closer to Lancaster, even
located in the west of the city.

4.3.3 Results for Dataset2. We now present our results for Dataset2
as shown in Figure 6. In this dataset, we include the daytime requests
from the TARN database with a minimum ISS score of 15 and follow
the distributions of healthcare teams’ involvement and incidents’
locations from the HEMS database. We do not describe these results
in detail as they are very similar to that of Dataset1.

5 DISCUSSION

In response to the research questions posed by NWAA, we now
discuss our "ndings and recommendations derived from the exper-
imental results as follows.

• We see that by recon"guring the location of their north
base, NWAA could decrease the total %ight distance by 6-
7% (around 4000NM/year) and the total %ight time by 2-3%
(around 30h/year) if they continue to serve as they were in
the period we considered.
• The improvement of having a third base when there is only
one team with a doctor is tiny (i.e., around 1%) for the total
%ight distance (which is around 615NM/year) and quite neg-
ligible for the total %ight time. On the other hand, having a
team with another doctor when there are two bases shows
huge improvement. In both datasets, having two teams with
doctors instead of one when there are two bases decreases

(a) DP |P (b) D |P |P (c) DP |D

(d) D |D |P (e) DDD (f) DD |D
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Figure 6: Visual depiction of all optimised base locations for

di$erent team con"gurations (parts (a)-(g)) obtained on the

100 instances of Dataset2 and their performance compari-

son (part (h))

the total %ight distance by 6% (around 3700NM/year) and the
total %ight time by 2.5% (around 30h/year) when it is com-
pared to the locations optimised by our approach. Upgrading
the current base locations (speci"cally the north base) and
converting one of the paramedics only teams to a team with
a doctor could decrease the total %ight distance by 12-13%
(around 7700NM/year) and the %ight time by 5% (around
60h/year).
• Having three bases is bene"cial only if there are at least
two teams with a doctor. When all the teams have doc-
tors, the third base decreases the total %ight distance by
15-16% (around 9500NM/year) and the total %ight time by
6% (72h/year). The e!ect is still substantial but lower when
there are two teams with a doctor. If there are only two bases
and two teams with a doctor, having a third base decreases
the total %ight distance by 11% (6700NM/year) and the total
%ight time by 4% (48h/year).

6 CONCLUSION AND FUTUREWORK

In this paper, we addressed some research questions of NWAA
regarding the base location and team con"guration of their air
ambulance operation to maximise their impact. We modelled the
problem as a special case of the Capacitated Multi-facility Weber
Problem (CMWP) and developed a robust matheuristic approach
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along with a large number of realistic problem instances. We de-
veloped an e#cient matheuristic method by combining heuristic
and exact techniques in a way that can generate high-quality solu-
tions in a reasonable amount of time. The close proximity of the
obtained base locations on the map across 100 di!erent instances
indicates our approach’s robustness. Finally, upon careful examina-
tion of the obtained outputs for di!erent scenarios, we provided
our observations/recommendations.

It is important to note that, in our analysis, we use the past
incident data. If there is a signi"cant change that a!ects the incident
distribution or count in the region (e.g., Covid-19 Pandemic), these
e!ects could be di!erent. In our analysis, we tried our best and use
what is available to us. Having said that, if the demand changes
(more likely during a pandemic) but the distribution does not change
(less likely during a pandemic), the locations we have identi"ed
will still improve the total %ight distance and time but less or more
depending on the change in demand levels. However, from another
angle, after some real-life data are available for a new scenario,
our data processing pipeline could be useful in such cases through
which we can produce realistic instances to run our method thereon
for more realistic output.

We have not analysed how much NWAA could gain/lose if they
use speci"c locations for a given team composition since the number
of options could be in"nitely many. However, given extra infor-
mation about the candidate scenarios for base locations and team
compositions, we can conduct these additional analyses for NWAA.
Currently, we are devising a hyper-heuristic based framework to
improve the solution generation process further. We are also work-
ing to optimise the operations of rapid response vehicles of NWAA,
which is a more complicated task than what we addressed here.
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