
A Hidden Markov Model Approach to
the Problem of Heuristic Selection in
Hyper-Heuristics with a Case Study

in High School Timetabling Problems

Ahmed Kheiri∗ a.kheiri@exeter.ac.uk
University of Exeter, College of Engineering, Mathematics and Physical Sciences,
Streatham Campus, Harrison Building, Exeter EX4 4QF, United Kingdom

Ed Keedwell e.c.keedwell@exeter.ac.uk
University of Exeter, College of Engineering, Mathematics and Physical Sciences,
Streatham Campus, Harrison Building, Exeter EX4 4QF, United Kingdom

doi:10.1162/EVCO_a_00186

Abstract
Operations research is a well-established field that uses computational systems to
support decisions in business and public life. Good solutions to operations research
problems can make a large difference to the efficient running of businesses and organi-
sations and so the field often searches for new methods to improve these solutions. The
high school timetabling problem is an example of an operations research problem and
is a challenging task which requires assigning events and resources to time slots subject
to a set of constraints. In this article, a new sequence-based selection hyper-heuristic
is presented that produces excellent results on a suite of high school timetabling prob-
lems. In this study, we present an easy-to-implement, easy-to-maintain, and effective
sequence-based selection hyper-heuristic to solve high school timetabling problems
using a benchmark of unified real-world instances collected from different countries.
We show that with sequence-based methods, it is possible to discover new best known
solutions for a number of the problems in the timetabling domain. Through this inves-
tigation, the usefulness of sequence-based selection hyper-heuristics has been demon-
strated and the capability of these methods has been shown to exceed the state of the art.

Keywords
Hyper-heuristic, educational timetabling, computational design, combinatorial opti-
misation, hidden Markov model.

1 Introduction

The field of search and optimisation in operations research has a long and varied his-
tory. Many methods have been developed that solve specific problems well and rely
on problem-specific knowledge to function. Although highly computationally efficient,
many of these methods are necessarily specific to each problem and so cannot easily
be applied to other problems without significant modification. The research commu-
nity has therefore looked to metaheuristics as generic problem-solving methods, for

∗Ahmed Kheiri (KheiriA@cardiff.ac.uk) is currently working at Cardiff University.

Manuscript received: October 30, 2015; revised: March 15, 2016 and May 17, 2016; accepted: May 27, 2016.
© 2017 by the Massachusetts Institute of Technology.
Published under a Creative Commons
Attribution 3.0 Unported (CC BY 3.0) license. Evolutionary Computation 25(3): 473–501



A. Kheiri and E. Keedwell

example, genetic algorithms (Holland, 1975), tabu search methods (Glover, 1986), and
other nature-inspired methods such as simulated annealing (Kirkpatrick et al., 1983) are
widely used. However, these methods usually require significant expertise to imple-
ment and tune for specific problems, and in their standard versions at least, are unable
to adapt to changing search spaces. Despite the efforts of the scientific community in
developing a variety of search methodologies, there is no known efficient method that
offers the best performance for solving different problems and for all possible situa-
tions, and in fact it has been proved that this is unachievable (Wolpert and Macready,
1997). Despite this, there has been scientific progress in designing general methods
which are valid for a wide range of, rather than all, problem domains. Such systems are
applicable to different instances from not only the same domain but also other problem
domains. Moreover, they are easy to build and maintain and so are less costly in terms
of the investment in time required to apply them to new problems. Hyper-heuristics
have emerged as such general purpose, high-level search methodologies which are
motivated by the goal of selecting or generating heuristics automatically to solve a wide
range of difficult optimisation problems (Burke et al., 2013). This work focuses on the
selection type of hyper-heuristics.

Traditional selection hyper-heuristics have focused on the improvement that single
or paired low-level heuristics can bring to an optimisation. The task for these methods
is to select the most appropriate and best performing heuristic for a given point in the
optimisation. A wide number of methods have been proposed for this task including
the simple random hyper-heuristic, choice function hyper-heuristic, and other methods
presented in Burke et al. (2013). However, in scientific fields where sequences are known
to be prevalent, for example in bioinformatics and language processing, a key feature is
that context is found to be important and that the “meaning” of a token in the sequence
cannot be determined unless the context in which it finds itself is also considered.
Here it is proposed that it is possible to extend this context principle to the selection of
heuristics within the search domain, noting that the effectiveness of search operations is
determined to a certain extent by those that have been executed before it. In this article,
we extend this principle to investigate the potential for the analysis of sequences of
operations in search and optimisation problems to construct building blocks of good
heuristic combinations.

This work studies and analyses the performance of two sequence-based meth-
ods, a simple fixed parametrised method and a hidden Markov model (HMM) ap-
proach (Kheiri and Keedwell, 2015b; Kheiri et al., 2015). A hyper-heuristic with a fixed
parametrised sequence size is implemented to allow for experimentation on the se-
quence lengths and to discover information regarding the information that can be
gained from each such sequence. In addition, the HMM method is shown to learn on-
line the optimum sequence lengths automatically and is able to adapt the probability
of heuristic application and sequence-based acceptance strategy to the search land-
scape. Experimentation with these methods is conducted on difficult problems from
timetabling, a key problem area in operational research.

The high school timetabling problem is a hard combinatorial optimisation problem
(Even et al., 1976). A solution requires the scheduling of events and resources in time
slots subject to a set of hard and soft constraints. A solution is expected to satisfy all
the hard constraints and as many of the soft constraints as possible. The importance
of the high school timetabling problem stems from its difficulty due to the number of
constraints involved, the NP nature of the problem (Even et al., 1976), and the need to
perform this hard task by educational institutions everywhere; thus it became necessary
to search for methods that help with automating this process.

474 Evolutionary Computation Volume 25, Number 3



Sequence-Based Selection Hyper-Heuristics

The article is structured as follows. Section 2 overviews selection hyper-heuristics
and high school timetabling problems. Section 3 describes the high school timetabling
benchmark used for the experimentation. Section 4 describes the developed method
including the algorithmic components and low-level heuristics. In Section 5, the perfor-
mance of the developed methods is analysed and compared against the state-of-the-art
approaches. Section 6 provides conclusions and areas for further work.

2 Background

2.1 Hyper-Heuristics

The term “hyper-heuristic” was used by Cowling et al. (2001) to describe a high-level
problem-independent method that provides a solution methodology to solve a wide
range of optimisation algorithms. Hyper-heuristics can be broadly classified into se-
lection hyper-heuristics to select from a set of predefined heuristics, and generation
hyper-heuristics which differ from selection methods in that they generate heuristics
(Burke et al., 2013). This work focuses on the former class of hyper-heuristics.

Selection hyper-heuristics are motivated by the understanding that each heuristic
performs differently on different problem instances and an approach that combines
them could yield better overall performance (Burke et al., 2013). An iterated selection
hyper-heuristic method (Özcan et al., 2008) aims to improve the current solution by
selecting and applying a low-level heuristic from a set of predefined low-level heuristics
(e.g., mutation operators and local search heuristics), leading to a new solution; then
the move acceptance method decides whether to accept or reject the modified solution.
This cycle of applying selection and move acceptance methods is repeated until a
termination criterion is satisfied. The number of studies on selection hyper-heuristics
is growing massively (Burke et al., 2013) and as such, space prevents us reviewing all
such approaches. However, we will overview the methods that are relevant to those
techniques proposed in this study.

The heuristic selection method is described in Section 4 but this must be coupled
with a move acceptance method to determine whether to select or reject the generated
solutions. A set of well-known metaheuristic-inspired move acceptance methods, in-
cluding hill climbing (only improving) (HC), simulated annealing (SA), great deluge
(GD), record-to-record travel (RR), and late acceptance (LA) methods are used as move
acceptance criteria in this study.

A deterministic move acceptance method which accepts only improved solutions
is described by Cowling et al. (2001). We refer to this method as the hill climbing move
acceptance method.

Simulated Annealing (SA) (Abramson et al., 1999) is a probabilistic metaheuristic
method, motivated by an analogy to the process of annealing in solids. At each step
a new solution is generated. The new solution is accepted if it improved the previous
solution. To prevent premature convergence on a local optimum, nonimproving solu-
tions are accepted with a probability of p = e− �

T , where � is the quality (cost) change,
and T is the method parameter, known as temperature, which regulates the probabil-
ity to accept solutions with higher cost. Generally speaking, the method starts with a
high temperature, then according to the cooling schedule, the temperature decreases
gradually towards the end of the search process. One way of reducing the temperature
is to apply the geometric cooling schedule: Ti+1 = Ti.β, where β can be empirically
tuned for a particular problem domain (Hajek, 1988). Simulated annealing has been
used as a move acceptance method within the selection hyper-heuristics in Bilgin et al.

Evolutionary Computation Volume 25, Number 3 475



A. Kheiri and E. Keedwell

(2007), at which the nonimproving solutions are accepted with a probability given by
the following equation:

p = e
− �

F (1− tcurrent
tlimit

)
, (1)

where � is the change in the cost at time tcurrent, tlimit is the time limit, and F is the expected
maximum change in the cost. Note that � is positive for nonimproving moves when
the objective is minimising rather than maximising; and F is empirically determined in
this work.

The Great Deluge (GD) algorithm was first introduced by Dueck (1993). GD is based
on a stochastic framework which allows improving moves by default. Nonimproving
moves are accepted if the cost of the candidate solution is better than an expected cost,
named as the water level at each step. The water level gets updated according to the
“rain speed” parameter. Dueck (1993) argued that if the rain speed value is chosen to
be very small, then the algorithm requires high computational time to produce a high-
quality solution. The cost value of the first generated candidate solution can be used
as the initial level in GD. Great deluge is utilised as a move acceptance method within
selection hyper-heuristics in Kendall and Mohamad (2004), at which the threshold level
(τ ) at time tcurrent is updated with the following equation:

τ = f + F ×
(

1 − tcurrent

tlimit

)
, (2)

where tlimit is the time limit, F is the expected maximum change in the cost, and f is the
expected final cost value. In this work F and f are empirically determined.

Dueck (1993) proposed another variant of GD named the record-to-record travel
(RR) method. The idea of RR is based on the simple notion that any new solution, which
is not much worse than the best solution recorded, is accepted.

The late acceptance method (Özcan et al., 2009) is a variant of the hill climbing
method. A candidate solution in the late acceptance method is accepted if its quality
is better than a solution which was obtained L steps before. The method requires an
implementation of a circular queue of size L which maintains the cost values of L
previously visited solutions.

2.2 High School Timetabling Problems

Due to the extreme difficulty of high school timetabling problems, metaheuristics are
preferred in most of the studies. Abramson (1991) described the high school timetabling
problem and then proposed a simulated annealing solution method. The author pre-
sented a parallel algorithm and proved experimentally that the developed method
works faster than the equivalent sequential algorithm. The tests were made on data
from an Australian school. The THOR school timetabling tool was developed by Melı́cio
et al. (2006) for Portuguese schools. An initial solution is first created using a heuristic
construction algorithm, which is improved further by applying fast simulated anneal-
ing. The tool was used by more than 100 Portuguese schools and was applied with great
success. Zhang et al. (2010) used a simulated annealing–based algorithm with a newly
designed neighbourhood structure to solve the high school timetabling problem.

One of the earliest studies that applied the tabu search to solve the high school
timetabling problem was suggested by Wright (1996). The conducted study produced
a timetable for a large comprehensive school in England, using a solution method
that involved heuristic search and a form of tabu search. Alvarez-Valdés et al. (2002)

476 Evolutionary Computation Volume 25, Number 3



Sequence-Based Selection Hyper-Heuristics

developed an algorithm based on tabu search for teacher assignment in Spanish sec-
ondary schools. The algorithm was implemented in three phases. In the first phase a
parallel heuristic algorithm is used to build an initial solution, and in the second phase
the solution is improved using the tabu search to obtain feasible solutions. In the third
phase the solution is improved further. The algorithm was applied to 12 Spanish school
instances and proved to provide better allocations than the manual ones. Jacobsen et al.
(2006) developed an approach that generates an initial solution using a construction
heuristic with a graph colouring algorithm. The solution is then improved using tabu
search. The algorithm was tested on data from German high schools. Bello et al. (2008)
treated the high school timetabling problem as a graph colouring problem, and used
it in association with the tabu search algorithm. The system was applied to instances
from Brazilian high schools.

Colorni et al. (1992) used several metaheuristics based on genetic algorithms (GA),
simulated annealing (SA), and tabu search (TS) and compared them using instances of
Italian high school data. The research results showed that a hybrid of a genetic algo-
rithm with local search could give promising performance. Calderia and Ross (1997)
evaluated the use of genetic algorithms to solve instances of school timetabling that
are randomly generated. An initial population of feasible timetables are produced in an
initial procedure and the GA is used to improve the quality of the generated population.
A highly constrained school timetabling problem extracted from the requirements of
a German high school was investigated by Bufé et al. (2001) using a hybrid approach.
An evolutionary algorithm combined with local search that uses specific mutation op-
erators to optimise the given timetables was used to find feasible solutions. Filho et al.
(2001) used a new representation for the high school timetabling problem by forming
clusters from pairs of teachers and classes. The authors applied a constructive genetic
algorithm to solve instances of two Brazilian high schools. Wilke et al. (2002) presented
a genetic algorithm for solving the German high school timetabling problem. A hy-
brid genetic approach is applied using multiple genetic operators which proved to
perform better than the traditional genetic algorithm. Beligiannis et al. (2008) solved
the high school timetabling problem using an adaptive evolutionary algorithm. The
algorithm did not employ a crossover operator, and the results showed the success of
the approach when applied on the Greek high school timetabling problem. Raghav-
jee and Pillay (2008) applied a genetic algorithm to the school timetabling problem.
The algorithm is based on creating an initial population of timetables and then apply-
ing a mutation operator to refine this population. It was tested with five high school
timetabling problems and proved to generate better results than all the methods tested
with the same set. Raghavjee and Pillay (2012) compared the performance of a genetic
algorithm and genetic programming using the Abramson (1991) dataset of five high
school timetabling problems. The genetic programming approach proved to give a bet-
ter performance in the five problems over other approaches including genetic algorithm,
neural networks, tabu search, and greedy search, especially in the large problems in the
set.

Other approaches used in the high school timetabling problem include adaptive
large neighbourhood search (Sørensen et al., 2012), integer programming (Birbas et al.,
2009), particle swarm optimisation (Tassopoulos and Beligiannis, 2012), tiling algo-
rithms (Kingston, 2005), bee algorithms (Lara et al., 2008), Hopfield neural networks
(Smith et al., 2003), walk down jump up algorithm (Wilke and Killer, 2010), greedy
randomised adaptive search procedure (Moura and Scaraficci, 2010), and constraint
programming approach (Valouxis and Housos, 2003). For the survey on the high school
timetabling problem, the reader is directed to Pillay (2013).

Evolutionary Computation Volume 25, Number 3 477



A. Kheiri and E. Keedwell

3 High School Timetabling Benchmark

Due to the different education systems and constraints imposed by different educational
institutions, a group of researchers (Post et al., 2012) has proposed a unified high school
timetabling format that fits with the different education systems across the world. To
encourage scientists and practitioners to provide solution methods for the high school
timetabling problem, an international timetabling competition (ITC 2011)1 (Post et al.,
2013) using the unified benchmark instances collected from over ten countries was
organised.

The competition consisted of three rounds. In the first and third rounds, competitors
were expected to submit solutions to a set of instances without any restriction on the
resources or techniques used to generate these solutions. In the second round, solvers
were submitted to the organisers and tested on a set of instances in a specified time
limit of 1000 seconds.

The problem instance consists of times which are the intervals of time in which
events run; resources which are the entities that attend events; and events which spec-
ify the coordination of resources. Solutions to the timetabling problem consist of the
allocation of resources to events. The resources that must be allocated are the group of
students (known as a class), the teacher, and the room in which the event will take place.
Each resource has a set of constraints associated with it (e.g., limitations on the number
of classes students are required to take in one day, teacher workload, and room capaci-
ties). Events can be single lessons or a set of lessons (an event group) and each event has
a number of properties that influence the allocation of resources to them through con-
straints or other optimality criteria. These are the event duration, pre-assigned resources
(e.g., some events must take place in certain rooms), the contribution of the event to
workload, and pre-assigned time slots. Fifteen hard/soft constraints are expected to be
satisfied (Post et al., 2013):

• C01 Assign resource: Assign resource to event.

• C02 Assign time: Assign time to event.

• C03 Split events: Split event into subevents under specific constraints.

• C04 Distribute split events: Split event into subevents under constrained
durations.

• C05 Prefer resources: Assign specific resource(s) to event.

• C06 Prefer times: Assign specific time(s) to event.

• C07 Avoid split assignments: Assign the same resource to a set of events.

• C08 Spread events: Spread events evenly through the cycle.

• C09 Link events: Assign the same time to a set of events.

• C10 Avoid clashes: Assign resources without having clashes.

• C11 Avoid unavailable times: Avoid assigning resources at unavailable times.

1Available at http://www.utwente.nl/ctit/hstt/itc2011/

478 Evolutionary Computation Volume 25, Number 3



Sequence-Based Selection Hyper-Heuristics

• C12 Limit idle times: Avoid having idle times for resources.

• C13 Cluster busy times: For a number of days, resources must be busy.

• C14 Limit busy times: For a number of times, resources must be busy.

• C15 Limit workload: Schedule the workload without exceeding a limit.

The quality of a solution is evaluated in terms of (hardViolationScore,softViolation
Score). A solution with a cost of (25,78) indicates an infeasibility value of 25 (sum of
weighted hard constraints violations) and objective value of 78 (sum of weighted soft
constraints violations). The weight value and whether the constraint is hard or soft per
each constraint type are presented in the instance.

The instances used during ITC 2011 are still available online in the competition
website, but deprecated. The developers of the benchmark project suggested the focus
on solving a set of instances, referred to as XHSTT-2014 instances, which contains a
carefully selected set of worldwide instances in their most up-to-date form. However, in
this work, we used the ITC 2011 instances of round 2 and compared the performance of
our approach against the ITC 2011 solvers using the same rules imposed for the second
round of the competition. We then applied the developed method on XHSTT-2014
instances. Table 1 summarises the main characteristics of the ITC 2011 and XHSTT-2014
instances obtained from 12 countries.

Due to space restrictions, we provide only a brief description of the studied problem.
For a full description of the problem, the reader is directed to Post et al. (2012, 2013).

Four competitors (GOAL, HySST, Lectio, and HFT) submitted solvers to the second
round of the ITC 2011 competition (Post et al., 2013; Kheiri, 2014). GOAL combined
iterated local search with simulated annealing (Fonseca et al., 2014). HySST applied a
stochastic local search hyper-heuristic (Kheiri et al., 2016). Lectio employed an approach
based on adaptive large neighbourhood search (Sørensen et al., 2012). HFT developed
an evolutionary algorithm as a solution method (Domrös and Homberger, 2012). The
ranking method was based on the average rank of ten independent trials with ten seeds
chosen at random over eighteen selected instances per team with each run for 1,000
seconds. The GOAL team obtained the lowest mean rank and were therefore deemed
the winner of the second round of ITC 2011. Soon after the competition, the results of the
GOAL team were improved using a late acceptance hill-climbing method as reported
in Fonseca et al. (2015).

4 Overall Approach

Hyper-heuristic methods operate above the level of heuristics and so do not deal directly
with the problem representation; the low-level heuristics provided are designed to work
at this level. As such, the proposed hyper-heuristic algorithm works simply by invoking
the KHE platform, an open source software tool written by Jeff Kingston (2014)2 which
constructs initial solutions using the concept of hierarchical timetabling utilising a tree
structure to represent resource allocations to events. The exact implementation of the
solution is not of concern from a hyper-heuristic perspective, but the interested reader
is directed to Kingston (2014). However, an initial produced solution of a given problem
instance generally violates many of the problem constraints (see Kingston, 2014). The

2Available at http://sydney.edu.au/engineering/it/∼jeff/khe/

Evolutionary Computation Volume 25, Number 3 479



A. Kheiri and E. Keedwell

Table 1: Characteristics of ITC 2011 and XHSTT-2014 problem instances.

Round 2 of ITC 2011 set

Country-Instance Times Teachers Rooms Classes Students Events Duration

Brazil-Instance3 25 16 8 69 200
Finland-ElementarySchool 35 22 21 60 291 445
Finland-SecondarySchool2 40 22 21 36 469 566
Greece-Aigio1stHighSchool2010 35 37 208 283 532
Netherlands-Kottenpark2008 40 81 11 34 1047 1118
Greece-WesternUniversityInstance3 35 19 6 210 210
Greece-WesternUniversityInstance5 35 18 6 184 184

Common to both sets

Brazil-Instance2 25 14 6 63 150
Brazil-Instance4 25 23 12 127 300
Brazil-Instance6 25 30 14 140 350
Spain-School 35 66 4 21 225 439
Greece-WesternUniversityInstance4 35 19 12 262 262
Italy-Instance4 36 61 38 748 1101
Kosova-Instance1 62 101 63 809 1912
Netherlands-Kottenpark2003 38 75 41 18 453 1156 1203
Netherlands-Kottenpark2005 37 78 42 26 498 1235 1272
Netherlands-Kottenpark2009 38 93 53 48 1148 1274
South Africa-Woodlands2009 42 40 30 278 1353

XHSTT-2014 set

Australia-BGHS98 40 56 45 30 387 1564
Australia-SAHS96 60 43 36 20 296 1876
Australia-TES99 30 37 26 13 308 806
Denmark-Falkonergaardens 50 90 69 279 1077 1077

Gymnasium2012
Denmark-HasserisGymnasium2012 50 100 71 523 1235 1235
Denmark-VejenGymnasium2009 60 46 53 163 918 918
Finland-College 40 46 34 31 387 854
Finland-HighSchool 35 18 13 10 172 297
Finland-SecondarySchool 35 25 25 14 280 306
Greece-HighSchool1 35 29 66 372 372
Greece-ThirdHighSchoolPatras2010 35 29 84 178 340
England-StPaul 25 68 67 67 1227 1227
USA-Westside2009 100 134 108 628 6354
South Africa-Lewitt2009 148 19 2 16 185 838

proposed hyper-heuristic is, therefore, used to fix as many of these violated constraints
as possible.

Recall that hyper-heuristics are composed of two components: the selection com-
ponent and the move acceptance component. In the selection component, a low-level
heuristic will be selected and applied to a current solution (Scurrent) and that will

480 Evolutionary Computation Volume 25, Number 3



Sequence-Based Selection Hyper-Heuristics

generate a new solution (Snew). Now, given Scurrent and Snew, the move acceptance will
decide whether to accept or reject Snew. In this work, a sequence-based selection (SS)
method described in Section 4.1 is used to select and apply sequences of heuristics.
Five different reusable metaheuristics inspired methods are used as move acceptance
including hill climbing local search (HC), simulated annealing (SA), great deluge (GD),
record-to-record travel (RR), and late acceptance (LA) methods. For example, if we used
HC as a move acceptance, then Snew will be accepted only if its quality is better than
Scurrent; otherwise, it will be rejected. If we used SA, then Snew will be accepted if its
quality is better than Scurrent or it will be accepted with a given probability.

Most of the parameters involved with the move acceptance methods are set to values
which were suggested in previous studies. In the case of solutions with hard constraint
violations, the F value in both simulated annealing and great deluge criteria is assigned
to 0.01% of the cost of the best recorded solution during the search process; otherwise,
the value is set to 1% of the cost of the best recorded solution in hand. Similarly, the
value of f in GD is set to 0.001% of the cost of the best solution in hand, and to 0.1% if
the best solution violates only soft constraints. These settings are suggested in Kalender
et al. (2013) and Ahmed et al. (2015). The memory size L of the LA acceptance method is
set to 500 as suggested in Özcan et al. (2009). The RR accepts the nonimproving solution
if its cost is not worse than the cost of the best recorded solution in hand plus 0,5. This
parameter is chosen after light experimentation.

The sequence-based selection hyper-heuristic approach in this study manages a set
of 15 low-level heuristics to improve the quality of a single solution:

• LLH0: swap the time slots of two randomly selected events. As an example,
assume that a Geography class event is assigned to the second time slot on
Monday and the History class event is assigned to the third time slot on Friday.
LLH0 will assign History class to the second time slot on Monday, and Geography
class to the third time slot on Friday.

• LLH1: select two random events and swap their time slots in case they have
the same duration or not adjacent; otherwise, the swap occurs but the first
event is moved to follow the last time slot occupied by the second event. As an
example, assume that a Geography class event with a duration of one is assigned
to the first time slot on Monday and the History class event with a duration of
two is assigned to the second time slot on Monday. LLH1 will assign Geography
class to the third time slot on Monday (not to the second time slot on Monday),
and History class to the first time slot on Monday. However, if both events have
the same duration, then LLH0 will be invoked.

• LLH2: randomly select an event and reschedule to a random time slot. As an
example, assume that a Mathematics class event is assigned to the first time slot
on Monday. LLH2 will select a new random time slot, for example, the last
time slot on Tuesday, and then it will unassign Mathematics from the first time
slot on Monday and then assign it to the last time slot on Tuesday.

• LLH3: randomly select an unassigned event and then assign it to a random
time slot. This low-level heuristic works similarly to LLH2; however, the event
is expected to be unassigned to begin with. As an example, assume that a
Mathematics class event is unassigned to any time slot. LLH3 will select a

Evolutionary Computation Volume 25, Number 3 481



A. Kheiri and E. Keedwell

random time slot, for example, last time slot on Tuesday, and then it will
assign Mathematics to the last time slot on Tuesday.

• LLH4: randomly select an assigned event and then unassign it. This low-level
heuristic is the opposite of LLH3.

• LLH5: randomly assign and unassign several events. This is a ruin and recreate
low-level heuristic which has a parameter that takes a value between 1 and 10.
This parameter will be selected randomly each time this heuristic is invoked.
The parameter represents the number of events to be assigned or unassigned.
If, for example, the parameter has a value of 5, then LLH5 will select five events
at random and then at each selected event the heuristic either applies LLH2,
LLH3, or LLH4 (selected randomly with an equal distribution).

• LLH6: shuffle the assignment of several events. This heuristic has a parameter
that takes a value between 1 and 10. This parameter will be selected randomly
each time this heuristic is invoked. The parameter represents the number of
events to be shuffled. If, for example, the parameter has a value of 5, then LLH6
will select five events at random and then shuffle their assignments.

• LLH7: split a randomly selected event into two events. This heuristic divides
a randomly chosen event if it has an assignment of a time block of at least two
consecutive time slots into two events such that their durations should sum
to the duration of the original event. As an example, assume that a Geography
class event with a duration of three is assigned to the first time slot on Monday;
LLH7 will divide the teaching of Geography into two separate (still consecutive)
time slots with one event having a duration of one and the other event having a
duration of two. This low-level heuristic will allow for future moves to operate
on those two events separately.

• LLH8: merge two randomly selected events adjacent in time and sharing the
same events. This heuristic is the opposite of LLH7.

• LLH9: swap two random resources. As an example, assume that a Geography
class event is assigned to Class Room A and the History class event is assigned to
Class Room B. LLH9 will assign a History class to Class Room A, and a Geography
class to Class Room B.

• LLH10: reschedule a resource element of an event. As an example, assume that
Class Room A is assigned to a Geography class event. LLH10 could re-assign
Class Room A to a History class.

• LLH11: randomly select an unassigned resource and then assign it at random.
This low-level heuristic works similarly to LLH10; however, the resource is
expected to be unassigned to begin with. As an example, assume that Teacher
A is unassigned to any class. LLH11 will select a random class event and then
it will assign Teacher A to the selected class.

• LLH12: randomly select an assigned resource and then unassign it. This low-
level heuristic is the opposite of LLH11. As an example, assume that Teacher
A is assigned to a given class. LLH12 will unassign Teacher A to the given
class.

482 Evolutionary Computation Volume 25, Number 3



Sequence-Based Selection Hyper-Heuristics

• LLH13: randomly assign and unassign several resources. This is a ruin and
recreate low-level heuristic which has a parameter that takes a value between
1 and 10. This parameter will be selected randomly each time this heuristic
is invoked. The parameter represents the number of resources to be assigned
or unassigned. If, for example, the parameter has a value of 5, then LLH13
will select five resources at random and then at each selected resource the
heuristic either applies LLH10, LLH11, or LLH12 (selected randomly with an
equal distribution).

• LLH14: shuffle the assignment of several resources. This heuristic has a pa-
rameter that takes a value between 1 and 10. This parameter will be selected
randomly each time this heuristic is invoked. The parameter represents the
number of resources to be shuffled. If, for example, the parameter has a value
of 5, then LLH14 will select five resources at random and then shuffle their
assignments.

4.1 Sequence-Based Selection Hyper-Heuristic

The hyper-heuristic implemented in this study aims to select and apply sequences of
heuristics instead of selecting and applying a single heuristic. This section introduces a
modified framework for selection hyper-heuristics enabling the operation of selecting
sequences of heuristics. Figure 1 illustrates how a generic sequence-based selection
hyper-heuristic framework operates.

This study applies a hidden Markov model (Baum and Petrie, 1966) approach for
the sequence-based selection method (see Figure 2). The goal is to learn and generate
sequences of low-level heuristics where low-level heuristics represent hidden states
of the model. Each state (low-level heuristic) has a transition probability to move to
another state (or itself) and a sequence-based acceptance strategy probability to decide
whether a sequence of heuristics is constructed. Therefore we define two matrices: one
to store the scores, hence the probabilities, to move from a heuristic to another; and
the other to store the scores of the acceptance strategy for each low-level heuristic. We
refer to the first matrix as TransitionScore and the second as ASScore. Note that the
Markov chain model employed in the work in Kheiri and Keedwell (2015a) is a simpler
Markov model where the state is directly visible to the observer and therefore the state
(low-level heuristic) transition probabilities are the only parameters.

Given the current low-level heuristic (llhc), the hyper-heuristic uses a roulette wheel
selection strategy to select the next low-level heuristic (llhn) with a probability given by:

TransitionScorellhc,llhn∑
∀j (TransitionScorellhc,llhj

)
. (3)

The hyper-heuristic will then select the sequence-based acceptance strategy l for the
selected heuristic llhn with a probability given by:

ASScorellhn,l∑
∀j (ASScorellhn,j )

. (4)

The sequence-based acceptance strategy (AS) has two options. If the first option is
selected (i.e., l = 1), this means the sequence of heuristics is now completed and the
heuristics in the sequence will be applied to the candidate solution to generate a new so-
lution. The move acceptance of the hyper-heuristic will be applied to decide whether to
accept or reject the new solution. The relevant transition and sequence-based acceptance

Evolutionary Computation Volume 25, Number 3 483



A. Kheiri and E. Keedwell

Figure 1: A sequence-based selection hyper-heuristic framework.

strategy scores will be updated where the new solution has a quality better than the
quality of the best solution in hand. If the second option is selected (i.e., l = 2), then the
selected heuristic will be added to the sequence of heuristics and no evaluation is con-
ducted. Initially, the hyper-heuristic mechanism assigns an equal probability to move
from any heuristic to another and the probability of selecting the associated sequence-
based acceptance strategy in order to allow all the low-level heuristics to process the
given solutions. In other words, TransitionScorellhi ,llhj

= 1 for all i, j ; and ASScorellhi ,l = 1
for all i, l. These scores are updated as long as the best solution recorded in hand is im-
proved. Consequently, after a number of steps the hyper-heuristic learns and detects a
list of sequences of low-level heuristics that perform well. The hyper-heuristic assigns
a higher probability of calling and applying these sequences and hence a lower prob-
ability of the use of heuristics that generate worsening results. In Kheiri and Keedwell
(2015b), score values are simply increased by 1 as a reward mechanism as long as the
best recorded solution in hand is improved.

We provide an example of how the developed method would work on five low-
level heuristics. Figure 3 shows the initial score values of the two HMM matrices. For
example, if llh2 is initially selected as the current low-level heuristic and considering the
scores in the transition matrix, the probability to move from llh2 to any other heuristic is

484 Evolutionary Computation Volume 25, Number 3



Sequence-Based Selection Hyper-Heuristics

Figure 2: A sequence-based selection hyper-heuristic utilising HMM; where LLHc and
LLHn are the current and next selected low-level heuristics, respectively, and ASn is the
next selected sequence-based acceptance strategy.

Figure 3: Initial score values of the HMM matrices for five low-level heuristics.

1/5. The hyper-heuristic applies the roulette wheel selection method to select the next
low-level heuristic. We assume that llh1 is selected next. The hyper-heuristic will then
select the sequence-based acceptance strategy of llh1. The probability at this point of
selecting any of the two acceptance strategies is 1/2. We assume that the hyper-heuristic
selects the acceptance strategy l = 2, meaning that llh1 will be added to the sequence
but an evaluation is not conducted. We move on to the next step and that we are now
on llh1. Again, we select the next low-level heuristic using the scores in the transition
matrix to move from llh1 and in this example, llh4 is selected. The probability of selecting
any of the two acceptance strategies for llh4 is 1/2. Assume that the hyper-heuristic uses
the roulette wheel selection strategy to select the acceptance strategy l = 1. This means
that the sequence of heuristics is now constructed and it will be applied to the current
solution. The constructed sequence is llh1, llh4 meaning that a sequence of heuristics of

Evolutionary Computation Volume 25, Number 3 485



A. Kheiri and E. Keedwell

Figure 4: Updated score values of the HMM matrices.

size 2 is generated. This sequence will be applied sequentially to the current solution,
returning a new solution. Assume that the new solution is better than the current
best obtained solution during the optimisation. In this case the relevant scores will
be updated and increased by 1. The scores of moving from llh2 to llh1 and from llh1
to llh4 will be updated. Also the sequence-based acceptance strategy l = 2 of llh1 and
the sequence-based acceptance strategy l = 1 of llh4 will be updated as illustrated in
Figure 4. Note that if the new solution does not improve the quality of the best solution
in hand, then the scores in the HMM matrices will not be updated. The next component
of the hyper-heuristic is the move acceptance method. If, for example, we are using
HC move acceptance, then the new solution will be accepted if its quality is better than
the candidate solution; otherwise, the new solution will be rejected. We are now at llh4,
and we continue with the same strategy to construct and apply the next sequence of
heuristics using the new scores and so on.

In this work we investigate the performance of three further variants of this method.
They all adopt a similar selection strategy but differ in the reward mechanism.

• Sequence-Based Selection Hyper-Heuristic with Linear Update (SSHH-L):
Corresponding score values are increased linearly by t as a reward mechanism
as long as the best recorded solution in hand is improved; where t is the time
elapsed in seconds.

• Sequence-Based Selection Hyper-Heuristic with Nonlinear Update (SSHH-
N): Corresponding score values are increased nonlinearly by et/c as a reward
mechanism as long as the best recorded solution in hand is improved; where t
is the time elapsed in seconds and c is a constant assigned arbitrarily to 30 in
this work.

• Sequence-Based Selection Hyper-Heuristic with Delta Update (SSHH-D):
Instead of a predefined rewarding mechanism, the difference in objective value
between the newly generated solution and the best recorded solution after the
application of the selected sequence of heuristics is used as a score value.

5 Results

5.1 Experimental Setup

The experimentation is conducted on an i7-4770K CPU at 3.50 GHz with a memory of
16.00 GB. The Mann–Whitney–Wilcoxon test (Fagerland and Sandvik, 2009; Kruskal,

486 Evolutionary Computation Volume 25, Number 3



Sequence-Based Selection Hyper-Heuristics

1957) is performed with a 95% confidence level in order to compare pairwise perfor-
mance variations of two given algorithms statistically. The following notations are used:
Given algorithm A versus algorithm B, (i) + (−) denotes that A (B) is better than B (A)
and this performance variance is statistically significant, (ii) A � B indicates that there
is no statistical significant between A and B. In the first set of experiments, eight se-
lected instances from the ITC 2011 set (one instance per each country) are used. The
termination criterion is set to 200 seconds for the preliminary experiments.

5.2 Comparison of the Different Move Acceptance Methods

Table 2 summarises the performance of the sequence-based selection (SS) method with
the different move acceptance methods, where the SS prefix refers to the sequence-based
selection approach and the suffixes refer to the various move acceptance methods. As
expected, the results confirm that the move acceptance method does not influence the
overall performance greatly. Based on the Mann–Whitney–Wilcoxon test with respect to
the averages over ten runs on the selected instances, there are no statistically significant
performance differences between the different methods on almost all instances. The
only exception is on the South Africa-Woodlands2009 instance, at which simulated
annealing seems to perform better than the others.

Based on the ranking strategy employed during the second round of ITC 2011, the
sequence-based selection method, when combined with the record-to-record travel
move acceptance method, seems to perform slightly better than the other hyper-
heuristic methods, as shown in Figure 5. Hence, SS-RR is taken under consideration
from this point onwards for further performance analysis, and we will refer to SS-RR
as SSHH.

5.3 Comparison of SSHH to the Parametrised Sequence Approaches

In this section, we describe a set of exhaustive experiments to determine the ex-
tent to which sequences of heuristics are useful in comparison to single heuristics
and compare this with SSHH’s ability to discover these online. We implemented a
simple hyper-heuristic to create and evaluate sequences of heuristics rather than ap-
plying single heuristics. Given n low-level heuristics {LLH0, . . . , LLHn−1}, we form
other sequences of heuristics of size 2 and size 3 and then invoke them successively.
The total number of sequences of low-level heuristics is n + n2 + n3 in the overall:
{LLH0, . . . , LLHn−1, LLH0 + LLH0, LLH0 + LLH1, . . . , LLHn−1 + LLHn−1, LLH0 + LLH0 +
LLH0, . . . , LLHn−1 + LLHn−1 + LLHn−1}, where LLHi + LLHj + LLHk denotes the se-
quence of applying LLHi followed by LLHj and followed by LLHk.

We are able to present results for a sequence size of up to 3 where 3,615 permutations
are investigated. There are 5,4240 permutations of four heuristics and an analysis of this
space is too computationally complex to execute here. The proposed SSHH does not
take the size of sequences as a parameter, but rather it learns the optimum size during
the optimisation (in an online manner).

One thousand solutions are randomly generated and applied to each sequence to
these generated solutions over eight ITC 2011 instances (a representative instance from
each country). The utilisation rate for each sequence is equal but that does not mean
that applying all these sequences would improve the quality of the input solutions.
We therefore computed the utilisation rate considering only improving moves per se-
quence and for each instance. Table 3 provides the top five sequences that generate the
highest utilisation rate of improving moves. From the table, we observe that sequences
of size 3 are the dominants. This is perhaps to be expected as a greater movement in

Evolutionary Computation Volume 25, Number 3 487



A. Kheiri and E. Keedwell

Table 2: Pairwise performance comparison of SS-HC, SS-SA, SS-GD, SS-RR, and SS-LA
(row vs column) using the Mann–Whitney–Wilcoxon test based on the average over ten
runs for eight instances.

Brazil-Instance2 (BR) and Finland-ElementarySchool (FI) instances

BR SS-HC SS-SA SS-GD SS-RR SS-LA FI SS-HC SS-SA SS-GD SS-RR SS-LA

SS-HC � � � � SS-HC � � � �
SS-SA � � � � SS-SA � � � �
SS-GD � � � � SS-GD � � � �
SS-RR � � � � SS-RR � � � �
SS-LA � � � � SS-LA � � � �

Greece-Aigio1stHighSchool2010 (GR) and Italy-Instance4 (IT) instances

GR SS-HC SS-SA SS-GD SS-RR SS-LA IT SS-HC SS-SA SS-GD SS-RR SS-LA

SS-HC � � � � SS-HC � � � �
SS-SA � � � � SS-SA � � � �
SS-GD � � � � SS-GD � � � �
SS-RR � � � � SS-RR � � � �
SS-LA � � � � SS-LA � � � �

Kosova-Instance1 (KS) and Netherlands-Kottenpark2009 (NL) instances

KS SS-HC SS-SA SS-GD SS-RR SS-LA NL SS-HC SS-SA SS-GD SS-RR SS-LA

SS-HC � � � � SS-HC � � � �
SS-SA � � � � SS-SA � � � �
SS-GD � � � � SS-GD � � � �
SS-RR � � � � SS-RR � � � �
SS-LA � � � � SS-LA � � � �

South Africa-Woodlands2009 (ZA) and Spain-School (ES) instances

ZA SS-HC SS-SA SS-GD SS-RR SS-LA ES SS-HC SS-SA SS-GD SS-RR SS-LA

SS-HC − − − � SS-HC � � � �
SS-SA + + + + SS-SA � � � �
SS-GD + − � + SS-GD � � � �
SS-RR + − � + SS-RR � � � �
SS-LA � − − − SS-LA � � � �

search space can be accomplished with the application of three well-selected heuristics,
although poorer performance could also perhaps be expected if the heuristics are not
well matched. It is clear from Table 3 that heuristic 5 is particularly important for gener-
ating new and better solutions in these problems, and the 3-fold combination of LLH5
appears top for 4/8 instances. However, it should also be noted that for the other half,
LLH5 is best combined with other heuristics to deliver optimal performance. This study
of heuristic sequence behaviour is important in determining heuristic performance in
context as part of the overall search process, rather than as single application events.

488 Evolutionary Computation Volume 25, Number 3



Sequence-Based Selection Hyper-Heuristics

Figure 5: Comparisons of the different move acceptance methods when combined with
the sequence-based selection method. The vertical axis shows the score values using
ITC 2011 ranking strategy over ten runs from eight instances.

Table 3: The performance of applying sequences of low-level heuristics of sizes one,
two, and three and applying them on randomly generated solutions. LLHi-j-k denotes
the sequence LLHi + LLHj + LLHk .

Instance First Second Third Fourth Fifth

Brazil-Instance2 LLH5-5-5 LLH1-5-5 LLH5-1-5 LLH5-0-5 LLH1-5-4
Finland-ElementarySchool LLH5-5-5 LLH5-5-1 LLH1-5-5 LLH5-0-5 LLH5-1-5
Greece-Aigio1stHighSchool2010 LLH5-5-5 LLH6-5-5 LLH5-5-6 LLH5-6-5 LLH5-4-5
Italy-Instance4 LLH1-5-0 LLH5-0-1 LLH5-0-0 LLH4-5-5 LLH5-13-0
Kosova-Instance1 LLH4-5-1 LLH5-4-4 LLH0-4-6 LLH5-4-0 LLH4-5-4
Netherlands-Kottenpark2009 LLH1-5-10 LLH4-5-5 LLH5-0-5 LLH5-3-5 LLH0-0-5
South Africa-Woodlands2009 LLH5-5-5 LLH5-0-5 LLH0-5-5 LLH5-5-1 LLH1-5-5
Spain-School LLH1-5-4 LLH5-4-4 LLH4-5-0 LLH4-4-5 LLH5-4-1

Now that the potential for applying sequences of heuristics has been established,
the performance of two hyper-heuristic methods is compared; one method has a fixed
parametrised sequence size and the other is SSHH, which learns the optimum sequence
lengths automatically during the search process. The selection method of the fixed
parametrised hyper-heuristic (FPHH) method selects at each decision point the size of
the sequence l randomly (limited to three in this work), and then selects randomly a
sequence of size l and applies it to the candidate solution. The same record-to-record
travel move acceptance method employed for SSHH is used in FPHH. Table 4 provides
the ranking score of SSHH and FPHH for eight ITC 2011 selected instances over ten
runs using the ITC 2011 ranking method. The table shows that SSHH performs the
best in nine instances including two draws. This provides evidence that the size of the
sequences of heuristics should not be fixed, but rather that the hyper-heuristic method
should take the responsibility of detecting the optimum size of sequences during the
optimisation.

5.4 Comparison of the Different Variants of SSHH

The performance of the different variants of SSHH described in Section 4 are inves-
tigated over eight ITC 2011 instances (a representative instance from each country).
Table 5 and Figure 6 summarise the performance of each variant based on ten runs
for each selected instance using the ranking strategy employed in the second round

Evolutionary Computation Volume 25, Number 3 489



A. Kheiri and E. Keedwell

Table 4: Score of SSHH and FPHH for each selected instance over ten runs which is
computed using the scoring scheme utilised in the second round of the ITC 2011 compe-
tition for ranking different approaches. The best score values are highlighted in bold.

Instance SSHH FPHH

Brazil-Instance2 1.45 1.55
Finland-ElementarySchool 1.50 1.50
Greece-Aigio1stHighSchool2010 1.20 1.80
Italy-Instance4 1.40 1.60
Kosova-Instance1 1.20 1.80
Netherlands-Kottenpark2009 1.40 1.60
South Africa-Woodlands2009 1.60 1.40
Spain-School 1.50 1.50

Table 5: Score of each SSHH variant for each selected instance over ten runs which is
computed using the scoring scheme utilised in the second round of the ITC 2011 compe-
tition for ranking different approaches. The best score values are highlighted in bold.

Instance SSHH SSHH-L SSHH-N SSHH-D

Brazil-Instance2 2.55 1.70 2.95 2.80
Finland-ElementarySchool 2.70 2.10 2.70 2.50
Greece-Aigio1stHighSchool2010 3.10 2.15 2.80 1.95
Italy-Instance4 2.80 2.30 2.70 2.20
Kosova-Instance1 3.00 2.30 2.00 2.70
Netherlands-Kottenpark2009 2.20 2.15 2.15 3.50
South Africa-Woodlands2009 3.05 2.15 1.95 2.85
Spain-School 3.20 1.80 2.80 2.20

Figure 6: Overall scores of the different variants of SSHH using ITC 2011 ranking strat-
egy over ten runs from eight instances.

of the ITC 2011 competition. The results show that SSHH-L with linear update per-
forms overall better than SSHH, SSHH-N, and SSHH-D. SSHH-L generates the best
score in four instances including one draw. SSHH-N obtains the best results in three
instances including a draw. The ranking results put SSHH-D third with best score in two

490 Evolutionary Computation Volume 25, Number 3



Sequence-Based Selection Hyper-Heuristics

Figure 7: Average utilisation rate of each low-level heuristic considering only invoca-
tions that generated improvement on the best-of-run solution and AS = 1 from ten runs
using SSHH while solving Spain-School and South Africa-Woodlands2009 instances.

Figure 8: Average utilisation rate of each low-level heuristic considering only invoca-
tions that generated improvement on the best-of-run solution and AS = 1 and 2 from
ten runs using SSHH while solving Spain-School and South Africa-Woodlands2009
instances.

instances. SSHH performs worse than the other algorithms considering that the number
of instances for which it produces the best ranking score is zero.

The best and the worst performing methods (SSHH-L and SSHH) are taken forward
for the performance comparison to previously proposed approaches.

5.5 An Analysis of SSHH and SSHH-L Methods

Figure 7 depicts the average heuristic utilisation rate using SSHH over ten runs of
each low-level heuristic considering only invocations that generated improvement on
the best-of-run solution and AS = 1 while solving two selected sample instances of
Spain-School and South Africa-Woodlands2009. Figure 8 shows the same but con-
sidering both AS = 1 and AS = 2. It can be observed in Figure 7 that LLH0, LLH1,
and LLH5 are the most successful heuristics, generating the highest utilisation rate
in both instances. LLH2 seems to perform well in the Spain-School instance, and the
same applies to LLH6 in the South Africa-Woodlands2009 instance. The remaining

Evolutionary Computation Volume 25, Number 3 491



A. Kheiri and E. Keedwell

Figure 9: Average utilisation rate of each low-level heuristic considering only invoca-
tions that generated improvement on the best-of-run solution and AS = 1 from ten runs
using SSHH-L while solving Spain-School and South Africa-Woodlands2009 instances.

Figure 10: Average utilisation rate of each low-level heuristic considering only invoca-
tions that generated improvement on the best-of-run solution and AS = 1 and 2 from
ten runs using SSHH-L while solving Spain-School and South Africa-Woodlands2009
instances.

heuristics appear to provide poor performance. One may notice from Figure 7 that
the most successful heuristics are event-oriented operators (LLH0-LLH8) rather than
resource-oriented operators (LLH9-LLH14). Having said that and by examining Fig-
ure 8, the results show that resource-oriented operators are useful when combined and
applied within a sequence of operations.

We repeat the same experiments for SSHH-L. Figures 9 and 10 provide the average
utilisation rate when AS = 1 and AS = 1 and 2, respectively, while solving two selected
sample instances of Spain-School and South Africa-Woodlands2009. Again and from
Figure 9, LLH0, LLH1, and LLH5 are the most successful heuristics, generating the
highest utilisation rate in both instances. We also observe from Figure 10 the involve-
ment of resource-oriented operators showing that they are useful when combined and
applied within a sequence of heuristics.

Figure 11 provides the average probabilities of the HMM matrices for each low-
level heuristic over ten runs using SSHH while solving two selected sample problem

492 Evolutionary Computation Volume 25, Number 3



Sequence-Based Selection Hyper-Heuristics

Figure 11: Average probabilities of the HMM matrices for each low-level heuristic from
ten runs using SSHH while solving Spain-School and South Africa-Woodlands2009
instances.

instances of Spain-School and South Africa-Woodlands2009. By examining the transi-
tion figure for Spain-School instance, the following exploitative heuristics LLH0, LLH5,
and LLH1 appear to be more successful than others in delivering best-of-run solutions
as shown by the probability matrix in the South Africa-Woodlands2009 problem in-
stance. In the latter, LLH9 is an exploration heuristic that needs to be combined with
(preferably) LLH1.

Figure 12 shows the average probabilities of the HMM matrices for each low-level
heuristic over ten runs using SSHH-L while solving the same two selected instances.
In the Spain-School instance, the heuristic LLH1 seems to dominate the search process
with the help of several exploration heuristics such as LLH2, LLH7, LLH11, and LLH13.
Sets of likely sequences have been generated using a roulette wheel simulator (Algo-
rithm 1) and the final HMM probability matrices as input for the Spain-School and
South-Africa-Woodlands2009 problem instances. Table 6 summarises the results. Al-
though single heuristics are frequently used, the approach clearly identifies sequences
of size 2 and 3 as useful to the search. In the South Africa-Woodlands2009 instance, the
sequences LLH14-LLH5 and LLH9-LLH0 are identified amongst the top ten generated
sequences. An interesting finding is that the exploration heuristics LLH9 and LLH14 are
resource-oriented operators whilst LLH0 and LLH5 are event-oriented operators. In the

Evolutionary Computation Volume 25, Number 3 493



A. Kheiri and E. Keedwell

Figure 12: Average probabilities of the HMM matrices for each low-level heuris-
tic from ten runs using SSHH-L while solving the Spain-School and South Africa-
Woodlands2009 instances.

Spain-School instance, the sequence of size 3, LLH13-LLH9-LLH0, is also identified be-
ing generated 153 times. It should be noted here that this represents the set of sequences
generated from the final learned matrix for each problem and the approach may also
have identified alternative sequences during the search process.

5.6 Comparison of SSHH and SSHH-L to the Best-Known Methods

Although the ITC 2011 set of instances is deprecated, we would like to obtain an
approximate idea of the relative performance of SSHH and SSHH-L with respect to
ITC 2011 solvers. For the comparisons with ITC 2011 solvers, a trial terminates after
the equivalent to t imeLimit = 1,000 seconds is reached as the competition requires. A
benchmarking software tool provided at the competition website is used to report the
equivalent time value in the used machine. It reported that our machine should take 492
seconds per run. Using the results of the second round of ITC 2011 solvers provided at
the competition website, Figure 13 summarises the performance comparison of SSHH
and SSHH-L to the ITC 2011 methods (GOAL, HySST, Lectio, and HFT) over 18 ITC
2011 instances, each with ten runs. The results show that the SSHH-L method is the
winner with a score of 2.22 in the overall, with SSHH slightly behind, indicating that

494 Evolutionary Computation Volume 25, Number 3



Sequence-Based Selection Hyper-Heuristics

Table 6: The top ten constructed sequences of low-level heuristics while solving Spain-
School and South Africa-Woodlands2009 instances using the developed simulator.

Spain-School
South Africa-

Woodlands2009

Sequence Count Sequence Count

LLH1 2759 LLH5 1021
LLH0 1081 LLH0 595
LLH5 394 LLH1 338
LLH8 + LLH0 333 LLH14 326
LLH10 227 LLH14 + LLH5 263
LLH7 + LLH1 201 LLH2 + LLH5 259
LLH13 + LLH1 198 LLH6 229
LLH13 + LLH8 + LLH0 153 LLH10 200
LLH2 + LLH1 145 LLH13 189
LLH11 + LLH1 134 LLH9 + LLH0 187

the sequence selection–based approach produces best-in-class results on this problem
set.

Table 7 summarises the results on XHSTT-2014 benchmark over ten runs. The
solvers (SSHH and SSHH-L) terminate as long as there is no improvement to the best
solution in hand for 200 seconds. At the time of submission, our solvers managed to
deliver 9 best-known solutions, and match the best-known solutions in 4 instances. The
performance is superior on most of the large instances including those from Australia,
Denmark, the Netherlands, and the USA. They also perform well on the problem
instances from Greece and Kosova. The performance on the instances from Brazil,
Spain, Finland, England, and Italy is average but still our solvers can deliver near

Evolutionary Computation Volume 25, Number 3 495



A. Kheiri and E. Keedwell

Figure 13: Comparisons of ITC solvers, SSHH and SSHH-L based on ITC 2011 ranking
strategy over ten runs for each ITC 2011 instances.

best-known solutions. However, they cannot generate the best or near the best-known
solutions on the problem instances from South Africa.

Considering the averages performance, SSHH-L is the winner in 18 instances in-
cluding 3 ties; while SSHH wins in 10 instances including 3 ties. Overall, the linear nature
of SSHH-L and its ability to weight improvements later in the search as more important
appears to preserve diversity and improve on the standard SSHH implementation.

6 Conclusion

The goal in hyper-heuristic research is to raise the level of generality by offering search
methodologies that are easier to use and cheaper to implement and maintain than
knowledge-intensive methods and yet deliver better average-case performance across
a range of problems.

A sequence-based selection hyper-heuristic framework is introduced in this study
whose selection component aims to discover sequences of heuristics.

In this article it has been shown:

• That the selection strategy of a hyper-heuristic is more important than the
move acceptance method for this range of problems.

• That sequences of heuristics are able to deliver improved performance over
single applications of a heuristic and that some problem instances benefit from
the use of multiple heuristic types working together in sequence.

• That sequence lengths are better to be optimised on a per instance basis rather
than randomly chosen.

• That an approach that prioritises heuristics that are able to generate better
solutions towards the end of the search performs better than an approach that
does not. This stands to reason because, as the search progresses, it becomes
increasingly difficult to find solutions that achieve better performance than
the current solution and so those heuristics capable of discovering these later
in the search should be rewarded accordingly. This method also provides a
mechanism for the hyper-heuristic to modify its learned behaviour later in the

496 Evolutionary Computation Volume 25, Number 3



Sequence-Based Selection Hyper-Heuristics

Ta
bl

e
7:

T
he

pe
rf

or
m

an
ce

of
SS

H
H

an
d

SS
H

H
-L

ov
er

te
n

tr
ia

ls
sh

ow
in

g
th

e
av

er
ag

e
an

d
th

e
be

st
-o

bt
ai

ne
d

so
lu

ti
on

in
te

rm
s

of
ha

rd
V

io
la

ti
on

Sc
or

e,
so

ft
V

io
la

ti
on

Sc
or

e
on

X
H

ST
T-

20
14

be
nc

hm
ar

k.
T

he
ta

bl
e

al
so

sh
ow

s
th

e
cu

rr
en

t
be

st
-k

no
w

n
qu

al
it

y
of

so
lu

ti
on

an
d

th
e

hi
gh

es
t-

kn
ow

n
lo

w
er

bo
un

d
,a

s
re

po
rt

ed
in

th
e

be
nc

hm
ar

k
w

eb
si

te
(a

tt
im

e
of

su
bm

is
si

on
,A

pr
il

20
15

),
pe

r
ea

ch
in

st
an

ce
.T

he
be

st
co

st
va

lu
es

ar
e

hi
gh

lig
ht

ed
in

bo
ld

.

In
st

an
ce

SS
H

H
av

g
SS

H
H

be
st

SS
H

H
-L

av
g

SS
H

H
-L

be
st

B
es

tk
no

w
n

L
ow

er
bo

un
d

A
us

tr
al

ia
-B

G
H

S9
8

5,
54

8
0,

52
0

5,
54

2
0,

49
3

1,
38

6
0,

0
A

us
tr

al
ia

-S
A

H
S9

6
2,

15
0,

2
2,

15
0,

2
0,

24
0,

0
A

us
tr

al
ia

-T
E

S9
9

2,
99

0,
61

2,
89

0,
65

0,
12

5
0,

0
B

ra
zi

l-
In

st
an

ce
2

0,
48

0,
10

0,
35

0,
10

0,
5

0,
5

B
ra

zi
l-

In
st

an
ce

4
7,

11
6

2,
11

7
6,

11
4

2,
11

7
0,

51
0,

51
B

ra
zi

l-
In

st
an

ce
6

0,
16

3
0,

10
1

0,
12

9
0,

10
1

0,
35

0,
35

D
en

m
ar

k-
Fa

lk
on

er
ga

ar
d

en
sG

ym
na

si
um

20
12

0,
18

07
0,

15
22

0,
18

06
0,

15
22

0,
33

10
0,

28
5

D
en

m
ar

k-
H

as
se

ri
sG

ym
na

si
um

20
12

12
,2

86
3

12
,2

62
8

12
,2

91
6

12
,2

64
1

12
,3

12
4

0,
7

D
en

m
ar

k-
V

ej
en

G
ym

na
si

um
20

09
2,

28
29

2,
27

31
2,

28
27

2,
27

20
2,

40
97

0,
0

Sp
ai

n-
Sc

ho
ol

0,
10

25
0,

51
7

0,
94

0
0,

51
7

0,
33

6
0,

33
4

Fi
nl

an
d

-C
ol

le
ge

3,
49

0,
8

2,
22

0,
8

0,
0

0,
0

Fi
nl

an
d

-H
ig

hS
ch

oo
l

0,
43

0,
7

0,
27

0,
7

0,
1

0,
0

Fi
nl

an
d

-S
ec

on
d

ar
yS

ch
oo

l
0,

10
3

0,
89

0,
10

5
0,

89
0,

83
0,

77
G

re
ec

e-
H

ig
hS

ch
oo

l1
0,

0
0,

0
0,

0
0,

0
0,

0
0,

0
G

re
ec

e-
T

hi
rd

H
ig

hS
ch

oo
lP

at
ra

s2
01

0
1,

29
0,

0
1,

20
0,

0
0,

0
0,

0
G

re
ec

e-
W

es
te

rn
U

ni
ve

rs
it

yI
ns

ta
nc

e4
0,

16
0,

4
0,

13
0,

4
0,

4
0,

0
It

al
y-

In
st

an
ce

4
0,

16
9

0,
38

0,
62

0,
38

0,
34

0,
27

K
os

ov
a-

In
st

an
ce

1
0,

18
0,

3
0,

18
0,

3
0,

3
0,

0
N

et
he

rl
an

d
s-

K
ot

te
np

ar
k2

00
3

0,
93

4
0,

46
6

0,
93

3
0,

46
6

0,
61

7
0,

0
N

et
he

rl
an

d
s-

K
ot

te
np

ar
k2

00
5

4,
11

75
0,

81
1

4,
11

61
0,

81
1

0,
10

78
0,

89
N

et
he

rl
an

d
s-

K
ot

te
np

ar
k2

00
9

12
,1

40
61

2,
74

95
13

,8
50

0
2,

85
05

0,
91

80
0,

17
0

E
ng

la
nd

-S
tP

au
l

29
,1

23
5

19
,1

29
4

31
,1

21
2

19
,1

30
6

16
,2

25
8

0,
0

U
SA

-W
es

ts
id

e2
00

9
0,

58
2

0,
51

2
0,

58
4

0,
51

2
0,

69
7

0,
0

So
ut

h
A

fr
ic

a-
L

ew
it

t2
00

9
2,

57
0,

52
4,

48
1,

10
4

0,
0

0,
0

So
ut

h
A

fr
ic

a-
W

oo
d

la
nd

s2
00

9
14

,0
9,

0
15

,0
10

,0
0,

0
0,

0

Evolutionary Computation Volume 25, Number 3 497



A. Kheiri and E. Keedwell

search, something that is possible, but less prevalent in the standard SSHH
method.

In conclusion, the empirical results indicate that the proposed method is powerful
and an effective general search methodology performing better than the current state-
of-the-art methods in solving high school timetabling problems.

Future work will focus on the automated adaptation of the single parameter of the
method within the move acceptance component.

Acknowledgements

This work was supported by EPSRC grant EP/K000519/1. The authors would like to thank David
Walker for developing the simulator presented in the results section.

References

Abramson, D. (1991). Constructing school timetables using simulated annealing: Sequential and
parallel algorithms. Management Science, 37(1):98–113.

Abramson, D. A., Dang, H., and Krisnamoorthy, M. (1999). Simulated annealing cooling schedules
for the school timetabling problem. Asia-Pacific Journal of Operational Research, 16(1):1–22.

Ahmed, L. N., Özcan, E., and Kheiri, A. (2015). Solving high school timetabling problems
worldwide using selection hyper-heuristics. Expert Systems with Applications, 42(13):5463–
5471.

Alvarez-Valdés, R., Parreño, F., and Tamarit, J. M. (2002). A tabu search algorithm for assigning
teachers to courses. TOP, 10(2):239–259.

Baum, L. E., and Petrie, T. (1966). Statistical inference for probabilistic functions of finite state
Markov chains. The Annals of Mathematical Statistics, 37(6):1554–1563.

Beligiannis, G. N., Moschopoulos, C. N., Kaperonis, G. P., and Likothanassis, S. D. (2008). Apply-
ing evolutionary computation to the school timetabling problem: The Greek case. Computers
and Operations Research, 35(4):1265–1280.

Bello, G. S., Rangel, M. C., and Boeres, M. C. S. (2008). An approach for the class/teacher
timetabling problem. In Proceedings of the 7th International Conference on the Practice and
Theory of Automated Timetabling, pp. 1–6.

Bilgin, B., Özcan, E., and Korkmaz, E. E. (2007). An experimental study on hyper-heuristics and
exam scheduling. In E. K. Burke and H. Rudová (Eds.), Practice and Theory of Automated
Timetabling VI, volume 3867 of Lecture Notes in Computer Science, pp. 394–412.

Birbas, T., Daskalaki, S., and Housos, E. (2009). School timetabling for quality student and teacher
schedules. Journal of Scheduling, 12(2):177–197.

Bufé, M., Fischer, T., Gubbels, H., Häcker, C., Hasprich, O., Scheibel, C., Weicker, K., Weicker,
N., Wenig, M., and Wolfangel, C. (2001). Automated solution of a highly constrained school
timetabling problem—Preliminary results. In E. J. W. Boers (Ed.), Applications of Evolutionary
Computing, volume 2037 of Lecture Notes in Computer Science, pp. 431–440.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., and Qu, R. (2013).
Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research Society,
64(12):1695–1724.

Calderia, J. P., and Ross, A. C. (1997). School timetabling using genetic search. In Proceedings of
the International Conference on the Practice and Theory of Automated Timetabling, pp. 115–122.

498 Evolutionary Computation Volume 25, Number 3



Sequence-Based Selection Hyper-Heuristics

Colorni, A., Dorigo, M., and Maniezzo, V. (1992). A genetic algorithm to solve the timetable
problem. Technical Report Technical Report No. 90-060, Politecnico di Milano, Italy.

Cowling, P., Kendall, G., and Soubeiga, E. (2001). A hyperheuristic approach to scheduling a sales
summit. In E. Burke and W. Erben (Eds.), Practice and Theory of Automated Timetabling III,
volume 2079 of Lecture Notes in Computer Science, pp. 176–190.

Domrös, J., and Homberger, J. (2012). An evolutionary algorithm for high school timetabling. In
Proceedings of the 9th International Conference on the Practice and Theory of Automated Timetabling,
pp. 485–488.

Dueck, G. (1993). New optimization heuristics: The great deluge algorithm and the record-to-
record travel. Journal of Computational Physics, 104(1):86–92.

Even, S., Itai, A., and Shamir, A. (1976). On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing, 5(4):691–703.

Fagerland, M. W., and Sandvik, L. (2009). The Wilcoxon–Mann–Whitney test under scrutiny.
Statistics in Medicine, 28(10):1487–1497.

Filho, G. R., Antonio, L., and Lorena, L. A. N. (2001). A constructive evolutionary approach to
school timetabling. In E. J. W. Boers (Ed.), Applications of Evolutionary Computing, volume
2037 of Lecture Notes in Computer Science, pp. 130–139.

Fonseca, G. H. G., Santos, H. G., and Carrano, E. G. (2015). Late acceptance hill-climbing for high
school timetabling. Journal of Scheduling, pp. 1–13.

Fonseca, G. H. G., Santos, H. G., Toffolo, T. Â. M., Brito, S. S., and Souza, M. J. F. (2014). GOAL
solver: A hybrid local search based solver for high school timetabling. Annals of Operations
Research, pp. 1–21.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Com-
puters and Operations Research, 13(5):533–549.

Hajek, B. (1988). Cooling schedules for optimal annealing. Mathematics of Operations Research,
13(2):311–329.

Holland, J. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan
Press.

Jacobsen, F., Bortfeldt, A., and Gehring, H. (2006). Timetabling at German secondary schools:
Tabu search versus constraint programming. In Proceedings of the 6th International Conference
on the Practice and Theory of Automated Timetabling, pp. 439–442.

Kalender, M., Kheiri, A., Özcan, E., and Burke, E. K. (2013). A greedy gradient-simulated anneal-
ing selection hyper-heuristic. Soft Computing, 17(12):2279–2292.

Kendall, G., and Mohamad, M. (2004). Channel assignment optimisation using a hyper-heuristic.
In Proceedings of the 2004 IEEE Conference on Cybernetic and Intelligent Systems, pp. 790–795.

Kheiri, A. (2014). Multi-stage hyper-heuristics for optimisation problems. PhD thesis, University of
Nottingham, School of Computer Science.

Kheiri, A., and Keedwell, E. (2015a). Markov chain selection hyper-heuristic for the optimisation
of constrained magic squares. 15th UK Workshop on Computational Intelligence.

Kheiri, A., and Keedwell, E. (2015b). A sequence-based selection hyper-heuristic utilising a hidden
Markov model. In Proceedings of the 2015 on Genetic and Evolutionary Computation Conference,
GECCO’15, pp. 417–424.

Kheiri, A., Keedwell, E., Gibson, M. J., and Savic, D. (2015). Sequence analysis-based hyper-
heuristics for water distribution network optimisation. Procedia Engineering, 119: 1269–1277.

Evolutionary Computation Volume 25, Number 3 499



A. Kheiri and E. Keedwell

Kheiri, A., Özcan, E., and Parkes, A. J. (2016). A stochastic local search algorithm with adaptive
acceptance for high-school timetabling. Annals of Operations Research, 239(1):135–151.

Kingston, J. H. (2005). A tiling algorithm for high school timetabling. In E. Burke and M. Trick
(Eds.), Practice and Theory of Automated Timetabling V, volume 3616 of Lecture Notes in Computer
Science, pp. 208–225.

Kingston, J. H. (2014). KHE14: An algorithm for high school timetabling. In Proceedings of the 10th
International Conference on the Practice and Theory of Automated Timetabling, pp. 269–291.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220(4598):671–680.

Kruskal, W. H. (1957). Historical notes on the Wilcoxon unpaired two-sample test. Journal of the
American Statistical Association, 52(279):356–360.

Lara, C., Flores, J. J., and Calderon, F. (2008). Solving a school timetabling problem using a
bee algorithm. In A. Gelbukh and E. F. Morales (Eds.), MICAI 2008: Advances in Artificial
Intelligence, volume 5317 of Lecture Notes in Computer Science, pp. 664–674.

Melı́cio, F., Calderia, J. P., and Rosa, A. (2006). THOR: A tool for school timetabling. In Proceedings
of the 6th International Conference on the Practice and Theory of Automated Timetabling, pp.
532–535.

Moura, A. V., and Scaraficci, R. A. (2010). A GRASP strategy for a more constrained school
timetabling problem. International Journal of Operational Research, 7(2):152–170.

Özcan, E., Bilgin, B., and Korkmaz, E. E. (2008). A comprehensive analysis of hyper-heuristics.
Intelligent Data Analysis, 12(1):3–23.

Özcan, E., Bykov, Y., Birben, M., and Burke, E. K. (2009). Examination timetabling using late
acceptance hyper-heuristics. In IEEE Congress on Evolutionary Computation, pp. 997–1004.

Pillay, N. (2013). A survey of school timetabling research. Annals of Operations Research, pp. 1–33.

Post, G., Ahmadi, S., Daskalaki, S., Kingston, J. H., Kyngas, J., Nurmi, C., and Ranson, D. (2012).
An XML format for benchmarks in high school timetabling. Annals of Operations Research,
194(1):385–397.

Post, G., Di Gaspero, L., Kingston, J. H., McCollum, B., and Schaerf, A. (2013). The third interna-
tional timetabling competition. Annals of Operations Research, pp. 1–7.

Raghavjee, R., and Pillay, N. (2008). An application of genetic algorithms to the school timetabling
problem. In Proceedings of the 2008 Annual Research Conference of the South African Institute of
Computer Scientists and Information Technologists on IT Research in Developing Countries: Riding
the Wave of Technology, pp. 193–199.

Raghavjee, R., and Pillay, N. (2012). A comparison of genetic algorithms and genetic programming
in solving the school timetabling problem. In Fourth World Congress on Nature and Biologically
Inspired Computing, pp. 98–103.

Smith, K. A., Abramson, D., and Duke, D. (2003). Hopfield neural networks for timetabling:
Formulations, methods, and comparative results. Computers and Industrial Engineering,
44(2):283–305.

Sørensen, M., Kristiansen, S., and Stidsen, T. R. (2012). International timetabling competition
2011: An adaptive large neighborhood search algorithm. In Proceedings of the 9th International
Conference on the Practice and Theory of Automated Timetabling, pp. 489–492.

Tassopoulos, I. X., and Beligiannis, G. N. (2012). A hybrid particle swarm optimization based
algorithm for high school timetabling problems. Applied Soft Computing, 12(11):3472–3489.

500 Evolutionary Computation Volume 25, Number 3



Sequence-Based Selection Hyper-Heuristics

Valouxis, C., and Housos, E. (2003). Constraint programming approach for school timetabling.
Computers and Operations Research, 30(10):1555–1572.

Wilke, P., Gröbner, M., and Oster, N. (2002). A hybrid genetic algorithm for school timetabling.
In B. McKay and J. Slaney (Eds.), AI 2002: Advances in Artificial Intelligence, volume 2557 of
Lecture Notes in Computer Science, pp. 455–464.

Wilke, P., and Killer, H. (2010). Walk down jump up algorithm: A new hybrid algorithm for
timetabling problems. In Proceedings of the 8th International Conference on the Practice and
Theory of Automated Timetabling, pp. 440–446.

Wolpert, D. H., and Macready, W. G. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1:67–82.

Wright, M. B. (1996). School timetabling using heuristic search. Journal of the Operational Research
Society, 47(3):347–357.

Zhang, D., Liu, Y., M’Hallah, R., and Leung, S. C. H. (2010). A simulated annealing with a new
neighborhood structure based algorithm for high school timetabling problems. European
Journal of Operational Research, 203(3):550–558.

Evolutionary Computation Volume 25, Number 3 501


