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A B S T R A C T

Conferences are a key aspect of communicating knowledge, and their schedule plays a vital role in meeting the
expectations of participants. Given that many conferences have different constraints and objectives, different
mathematical models and heuristic methods have been designed to address rather specific requirements of
the conferences being studied per se. We present a penalty system that allows organisers to set up scheduling
preferences for tracks and submissions regarding sessions and rooms, and regarding the utilisation of rooms
within sessions. In addition, we also consider hybrid and online conferences where submissions need to be
scheduled in appropriate sessions based on timezone information. A generic scheduling tool is presented
that schedules tracks into sessions and rooms, and submissions into sessions by minimising the penalties
subject to certain hard constraints. Two integer programming models are presented: an exact model and
an extended model. Both models were tested on five real instances and on two artificial instances which
required the scheduling of several hundreds of time slots. The results showed that the exact model achieved
optimal solutions for all instances except for one instance which resulted in 0.001% optimality gap, and
the extended model handles more complex and additional constraints for some instances. Overall, this work
demonstrates the suitability of the proposed generic approach to optimise schedules for in-person, hybrid, and
online conferences.
1. Introduction

Conferences are events of great importance to scientific commu-
nities. They provide an opportunity for academics and researchers to
present their research work and receive feedback from the community,
and to learn from other presenters. In addition, participants benefit
from networking opportunities, exchanging ideas, and potential future
collaborations. Hence, a conference schedule brings a significant oppor-
tunity and challenge in offering the best possible experience to every
participant. Conference organisers usually struggle to create, or even
characterise, the best schedule due to the large number of preferences
and constraints involved. Some of the constraints that make conference
scheduling an arduous task are requests from presenters to present at
a specific time, resolving presenters conflicts, handling capacity issues,
to name a few. Additionally, COVID-19 pandemic has resulted in many
conferences switching to online or hybrid mode, which introduces
further complexity due to different timezones involved.

Due to the diverse conference terminology that has been used in the
conference scheduling problem (CSP) literature, we clarify the conference
terminology as used in this paper, which we believe may be applicable
to many conferences. While various terms such as paper, presentation,
talk, discussion, and panel are used in the literature, we use the term
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‘‘submission’’ to refer to a formal event that requires scheduling at a
conference. The term ‘‘track’’ is used to refer to a group of submissions
with similar subject, whereas terms such as stream, subject area, and
topic are used in the literature. We use the term ‘‘time slot’’ to refer to
a fixed predefined amount of time available for presentation, and the
term ‘‘session’’ is used to refer to a certain time period of the conference
that consists of a number of time slots.

In this paper, we consider the CSP, which includes a set of tracks
along with their corresponding submissions, a set of available ses-
sions along with their corresponding time slots, and a set of available
rooms. The objective is to achieve a schedule which is feasible to a
number of (hard) constraints and minimises violations of a number of
preferences (soft constraints) by assigning all tracks into sessions and
rooms, and assigning all submissions into sessions. Based on the types
of violations, a CSP can be approached from a Presenter-Based Perspec-
tive (PBP) or from an Attender-Based Perspective (ABP) (Thompson,
2002). A PBP approach aims to minimise violations associated with
presenters preferences, such as a request to present on a specific day
or at a specific time (Sampson, 2004). An ABP approach minimises
violations regarding attendants preferences. Some examples are that
all of the attendants wish to attend their favourite session, they do
vailable online 6 April 2024
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not want to miss a session due to space shortage, and they do not
want to choose between two sessions of their interest due to sessions
being scheduled concurrently (Zulkipli et al., 2013). Some studies
have adopted a mixed approach by considering both presenters and
attendants preferences (Nicholls, 2007; Vangerven et al., 2018).

The CSP was introduced by Eglese and Rand (1987) and was proved
to be -hard by Quesnelle and Steffy (2015) and Vangerven et al.
2018). Even though the problem was introduced several decades
go, it has not received much attention from researchers compared
o related problems, such as Class and Exam Scheduling (Sampson,
004). To the best of our knowledge, there are only 16 published
tudies tackling the CSP (see Section 2). However, many conferences
ave different scheduling requirements, objectives, and constraints. As
result, a method that works well for a conference could be unsuitable

or another conference. Thus, we believe that a generic framework for
onference scheduling is needed. To this end, in this study we present

generic approach by considering both PBP and ABP to generate
chedules for conferences in a fully automated manner.

Our work mainly differs from the existing literature in the sense
hat we generate both low-level and high-level conference schedules.
hat is, we consider preferences and constraints associated with both
racks and submissions to create a complete schedule of a conference.
n addition, our approach is suitable for hybrid and online conferences
s we take timezones into account to avoid scheduling submissions into
nsuitable times. To the best of our knowledge, this is the first paper
o consider timezone differences in conference scheduling. Moreover,
e present a generic approach for conference scheduling by applying

he weighted sum method as described in Ehrgott (2005) to create an
bjective function to optimise. The method is applied to our penalty
ystem designed to accommodate scheduling preferences which are
eighted according to their relative importance. An easy-to-use and

onfigurable spreadsheet template is used to meet the demands of dif-
erent conferences. The template offers a single data format that is easy
o adjust in order to fit different conference data. We acknowledge that
ur template is not suitable for all conferences, as some conferences
ay have very specific structures, but our aim is to accommodate as
any as possible. Furthermore, in contrast to most previous studies
hich assume that all submissions require the same amount of time for

cheduling (one time slot), we allow for submissions to have a different
mount of required time slots, such as keynote talks.

In Section 2, we present related work on conference schedul-
ng problems, followed by Section 3 which describes the conference
cheduling problem as considered in this work. Then, in Section 4,
e present our exact model as a binary integer program with linear
bjective. Computational results are presented in Section 5, followed
y Section 6 which presents the extended model with additional
onstraints along with computational results. Next, in Section 7, we
ummarise our work and suggest potential future lines of research.
e present our proposed spreadsheet template used for storing input

arameters in Appendix A.

. Related work

A detailed survey on CSP can be found in Vangerven et al. (2018).
part from those mentioned in Vangerven et al. (2018), we discuss the

ollowing studies which are related to our work.
A case study regarding the scheduling of 2001 San Antonio meetings

f the Public Choice Society was presented in Potthoff and Munger
2003). The problem required the scheduling of submissions into ses-
ions such that submissions of each track are evenly spread among
essions, and ensuring participants are not scheduled in more than one
ubmission of the same session. The authors implemented an integer
rogramming (IP) model to create the schedule of the conference which
ncluded 14 tracks and 96 submissions with 10 sessions available.

Potthoff and Brams (2007) extended the previous work by imple-
enting their proposed IP method on both 2005 and 2006 annual
488
meetings of Public Choice Society in New Orleans. The 2005 annual
meeting required the assignment of 76 submissions from 13 tracks into
9 sessions, whereas the 2006 annual meeting included 45 submissions
from 6 tracks with 9 sessions available. The model had the same
objective and all the constraints as in the work of Potthoff and Munger
(2003), and included an additional constraint in the IP formulation
which considered the unavailability of some presenters to attend cer-
tain sessions. Both generated solutions had all constraints satisfied and
successfully accomplished the objective.

Nicholls (2007) developed a simple heuristic algorithm to aid the
scheduling process of the 2003 Western Decision Science Institute An-
nual Meeting. This conference involved 330 registered attendees, 295
submissions, 73 regular sessions including four time slots on average,
11 special sessions (a whole session is required for a submission), and
7 rooms of different sizes. The proposed heuristic was used to assist the
Program Chair during the scheduling process rather than autonomously
produce the conference schedule. The proposed heuristic algorithm did
not have an objective function per se, but its main purpose was to
resolve conflicts by utilising a set of rules and consider preferences from
presenters and attendees.

Zulkipli et al. (2013) addressed the Capacity Planing problem vari-
ant of conference scheduling. The conference involved 3 tracks, 60
submissions, 5 sessions with 4 time slots each, and 3 rooms were
available for parallel scheduling. They collected preferences from par-
ticipants to create weights for each submission and used these to
form the objective function of their goal programming model. The
problem required the assignment of submissions into rooms and time
slots in such manner that each session achieves a balanced number of
submissions with respect to the weights.

Edis and Edis (2013) described a case study in which they consid-
ered an artificial conference including 10 tracks and 170 submissions
with a 3 days time span. Each day had 4 sessions with 5 time slots
each, and 3 rooms were available for parallel scheduling. In their
case study, the goal of the primary objective was to minimise the
concurrent occurrence of same or similar tracks within the same session
in each day. In addition, a secondary objective of the problem was
to distribute the number of submissions into sessions in a balanced
manner. The authors formulated an integer programming model, along
with an extended version to address both objectives.

Another case study was conducted by Quesnelle and Steffy (2015)
in which they used real data from the 2013 PenguiCon Conference.
The conference was attended by around 1000 participants and involved
253 submissions, 195 presenters, and 14 rooms. In their study, the
authors provided problem definitions and showed that the scheduling
problem under study along with some variants are all -hard. They
specifically defined and focused on the Extended Conference Timetable
Decision Problem (ECTTD) and the Preference Conference Optimisation
Problem (PCO). The objective of the ECTTD problem is the assignment
of presenters into submissions and time slots, as well as the allocation
of submissions into rooms based on their availability and compatibility.
The PCO problem includes the objective of minimising participants
preferences conflicts by assigning presenters into submissions and time
slots, as well as assigning submissions into appropriate rooms. Both
ECTTD and PCO were solved with integer programming models.

The CSP of one of the largest conferences within the field of Op-
erations Research, namely the EURO2016 Conference, was addressed
in Stidsen et al. (2018). This particular conference included 25 ar-
eas of subject, 124 tracks, 1852 submissions, 11 sessions (for each
typically 4 time slots were available), 5 buildings with 54 rooms in
total, 1600 presenters, and attracted around 2000 participants. The
problem required the allocation of subject areas into buildings, and
the scheduling of tracks into sessions and rooms so as to comply with
the hierarchical structure of the conference. The authors addressed the
problem by implementing a multi-objective mixed integer program-
ming (MIP) model which included 5 objectives ranked based on their

significance and were sequentially solved following a lexicographic
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optimisation approach. These objectives were ranked in the following
order: (1) Minimisation of the number of areas assigned to different
buildings, (2) Maximisation of the number of related areas assigned to
the same building, (3) Minimisation of the number of different rooms
allocated for each track, (4) Minimisation of the number of time gaps
within tracks and, (5) Maximisation of the residual room capacity.
Furthermore, room capacity constraints were considered, and parallel
scheduling of the same track was not allowed. However, Stidsen et al.
(2018) commented that author conflicts were circumvented due to the
policy of the conference that allows only one submission per author,
and the room utilisation was partially considered due to insufficient
data. The authors clarified that the proposed model generates only the
high-level schedule, leaving intentionally the low-level schedule to the
track organisers. The success of the proposed model is reflected by the
fact that it was also used to schedule the IFORS2017, EURO2018, and
IFORS2020 conferences, and a slightly improved version of the model
to schedule the subsequent EURO and IFORS conferences.

Although our models share some common scheduling requirements
with the model of Stidsen et al. (2018), they differ significantly. Sim-
ilarly to Stidsen et al. (2018), we have considered the fact that the
same track must not run in parallel, we minimise the number of rooms
utilised per track, we consider the scheduling of tracks consecutively,
and we take room capacities into account. However, in our study,
we also consider the following requirements. We allow for conference
organisers to express preferences regarding the scheduling of tracks into
sessions. Our models take into account that certain rooms might not be
available during some sessions. We consider presenters conflicts where
a presenter might have multiple submissions which is circumvented
in Stidsen et al. (2018) study due to the policy of conference. In
addition, our approach is suitable for hybrid and online conferences as
we consider the timezones of the presenters. Our models accommodate
the preferences for sessions and preferences for rooms (accessibility
and facility reasons) from presenters. In addition to presenters conflicts,
we also consider attendees and track chairs conflicts. Furthermore, we
consider the scheduling of submissions that have a different amount
of required time slots. In contrast to Stidsen et al. (2018) who gen-
erate a high-level schedule, we generate both high-level and low-level
schedules considering preferences and requirements on both tracks and
submissions levels. In our work we do not consider areas and buildings
as described in Stidsen et al. (2018), neither the assignment of similar
areas into same buildings, but we allow for conference organisers to
specify similar tracks which should not be scheduled in parallel. Our
models are significantly different mainly because EURO conference is
unusually large and follows an unusual hierarchical structure, which
characteristics we believe are not representative of typical conferences.

Vangerven et al. (2018) addressed the CSP of four conferences,
namely the MathSport 2013, MAPSP 2015 & 2017, and ORBEL 2017.
Their main objective was to maximise the satisfaction of attendees in
terms of attending their preferred submissions. Preferences of attendees
were collected via e-mail by the authors. A secondary objective was
the minimisation of session hopping, which occurs when participants
miss parts of their preferred submissions because they are scheduled
in different rooms. A third objective of this work was to satisfy the
preferences of the presenters. To achieve the three objectives, the
researchers proposed a hierarchical three-phased approach. Firstly,
the authors maximise the satisfaction of attendees with an integer
programming model. Then, they minimise session hopping with either
dynamic programming or heuristic approach, and in the last phase, they
satisfy the preferences of the presenters with an integer programming
model. Their proposed method was implemented on four medium
size conferences for which the number of rooms that allowed parallel
scheduling ranged between 2 to 4, submissions ranged between 76 to
90, and profiles of attendees ranged between 58 to 101. They also
showed that the CSP with 𝑛 rooms for parallel scheduling is -hard
489

hen 𝑛 ≥ 3. f
Another study on CSP was conducted by Manda et al. (2019) who
used the dataset from Ecology 2013 for testing purposes to deliver a
schedule for the Evolution 2014 conference. While the former con-
ference spanned 5 days including 324 submissions, 8 sessions with
10 time slots each, and 5 rooms, the latter conference spanned 4
days including 1014 submissions, 16 sessions with 5 time slots each,
and 14 rooms. In their study, all submissions need to be scheduled
into time slots by maximising the coherence within sessions and min-
imising the similarity between sessions that are scheduled in parallel.
Three different approaches, a random, a greedy, and an integer linear
programming model were implemented for the initialisation process.
These initial solutions were further optimised with a hill climbing
algorithm and a simulated annealing algorithm, and with two different
optimisation methods. While the first optimisation method optimised
the objectives concurrently, the other method was sequential. Through
experimentation, the authors found that the different approaches for
the initialisation process did not affect the final solution, and that
concurrent optimisation was superior to sequential. Therefore, they
followed the random initialisation process and the concurrent optimi-
sation method to generate the final schedule. The delivered schedule
though was significantly altered by the program committee.

The above case studies indicate that conferences that were consid-
ered for an exactly optimised scheduling typically involved up to a few
hundred of submissions, while a few larger conferences with over a
thousand of submissions were addressed using approximate methods.
However, there is a large variety of both exact and approximate meth-
ods as well as their constraints and objectives. In the next sections we
present new models which have been developed to provide a unifying
and generic framework for conference scheduling and would fit most
of the conferences described in the above case studies.

3. Description of the conference scheduling problem

In this section, we describe the essential elements of the problem
studied in this paper to keep it self-contained; a more detailed descrip-
tion of the problem is provided in Kheiri et al. (2024). We also discuss
the functionality of penalties and weights of our approach and present
the real-world conferences that motivated our research. We consider
that a conference is defined by a set of track-submission pairs   ,
a set of sessions , and a set of rooms , whose descriptions and
relationships are described next.

We split the whole time of the conference duration into a set of
sessions  representing certain time periods between breaks, which
include lunch and coffee breaks, that allow attendees to move between
rooms. That is, we assume that every attendee will stay in the same
room during a session. We assume that the sessions in  ∶= {1, 2,… , 𝑆}
re chronologically ordered, so 𝑆 is the last session of the conference.
ach session 𝑠 ∈  consists of a number of time slots defined by a set
𝑠. Each time slot 𝑡𝑠 is defined as a fixed predefined amount of time
vailable for scheduling a submission (e.g., 15 or 20 min). For instance,
f a time slot has a 15 min duration, then a session that consists of 4
ime slots has a 60 min duration. We assume that all time slots have
he same fixed predefined amount of time, but we do not assume that
ll sessions have the same number of time slots. We use 𝑟 to denote the
oom from the set of available rooms . We assume that submissions
re presented in parallel during sessions, and the maximum number of
essions that can be scheduled in parallel is given by the total number
f available rooms.

The conference requires scheduling of a number of submissions
hich we include in set   , where each submission (𝑡, 𝑠𝑢) ∈   is
niquely identified as a pair of its track and the submission itself. We
ssume that each submission (𝑡, 𝑠𝑢) is categorised into exactly one track
rom the set of tracks  based on their subject similarity, i.e., 𝑡 ∈  , and
e allow for different tracks to contain different number of submissions
 𝑡, i.e., 𝑠𝑢 ∈  𝑡. Each submission usually requires one time slot
or scheduling at the conference. However, some submissions, such as
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a keynote speech, might require additional time slots, which must be
scheduled in the same session. For each submission (𝑡, 𝑠𝑢), we define
𝑛(𝑡,𝑠𝑢) which indicates its number of required time slots. Similarly, note
that a track may utilise more than one session, but we do not know
how many sessions beforehand. Although ‘‘submission’’ usually refers
to a research paper, it may also refer to any type of formal event that
requires scheduling, such as a keynote speech, job market, tutorial,
workshop, or any other event. Additional tracks are created accordingly
for such formal events.

Furthermore, let  be the set of all humans involved in the confer-
ence. A ‘‘presenter’’ is defined as a person who presents a submission
during the conference; we allow for more than one presenter of each
submission (which is required e.g., for a panel discussion). We define
a set   𝑝 which contains the submissions for which the presenter
𝑝 ∈  ⊆  is the same.

Moreover, we have the following hard requirements:

• Tracks must be scheduled in only one room: It is not allowed
for a track to utilise more than one room as this would cause
inconvenience for attendees that would have to move between
rooms. This also implies that the same track must not be sched-
uled within the same session in different rooms. Assuming that
attendees usually attend the whole track of their interest, schedul-
ing the same track in parallel would result in attendees missing
some of their preferred submissions.

• Schedule must be free of presenters conflicts: In many confer-
ences, authors are allowed to present more than one submission.
Therefore, we must ensure that two or more submissions which
belong to the same presenter are either scheduled within the same
room of a session or scheduled within different sessions. Note
that a submission does not necessarily have only one presenter, it
may include multiple presenters. We could relax this constraint by
considering conflicts only on a time slot level instead of session
level. However, this would require presenters to move between
rooms which is inconvenient, and they would most likely want to
attend both of those sessions.

Apart from these hard requirements, we assume that conference
organisers have a number of requests. These are soft requirements
that are used to adjust scheduling preferences of conference organisers
and satisfy additional requirements of a conference. To accommodate
requests, we use a penalty system and a weight system. The soft
requirements are:

• Track-Session request: We allow to penalise scheduling any
track 𝑡 into any session 𝑠 by assigning a non-negative penalty 𝛼𝑡𝑠.

• Track-Room request: A non-negative penalty 𝛽𝑡𝑟 is applied for
scheduling a certain track 𝑡 into a specified room 𝑟. This al-
lows the allocation of tracks with high expected attendance into
appropriate rooms and vice versa.

• Session-Room request: In case a room 𝑟 is unavailable for
scheduling during a particular session 𝑠, we apply a non-negative
penalty 𝛾𝑠,𝑟.

• Submission-Session request: We allow to penalise scheduling
any submission (𝑡, 𝑠𝑢) into any session 𝑠 by assigning a non-
negative penalty 𝜖(𝑡,𝑠𝑢)𝑠 . This allows the accommodation of prefer-
ences from presenters regarding their preferred scheduled time.

• Submission-Timezone request: We allow to penalise scheduling
any submission (𝑡, 𝑠𝑢) into any session 𝑠 by assigning a non-
negative penalty 𝛿(𝑡,𝑠𝑢)𝑠 as a result of unsuitability of any pre-
senter’s timezone. This is analogous to the Submission-Session
request but we keep it separate to allow for a different weight.
Considering the timezone may be important for online presenters
as well as for in-person presenters experiencing a jet-lag.

• Submission-Room request: 𝜁 (𝑡,𝑠𝑢)𝑟 specifies a non-negative penalty
for scheduling a particular submission (𝑡, 𝑠𝑢) into a specified room
𝑟. This is used for the consideration of special requests from
490
Table 1
Characteristics of the instances: |  | is the number of submissions, | | is the number
of tracks, || is the number of sessions, || is the number of rooms, | | is the number
of time slots across all the sessions, Required TS is the required number of time slots
𝑛(𝑡,𝑠𝑢) by all the submissions, and Available TS is the number of available time slots
for scheduling across all the sessions and rooms, || ⋅ | |, subtracting penalised time
slots due to 𝛾𝑠,𝑟 > 0.

Instance |  | | | || || | | Required TS Available TS

GECCO19 202 29 13 10 45 215 450
GECCO20 158 24 7 8 28 161 200
GECCO21 138 27 6 8 24 150 192
N2OR 35 8 4 4 9 36 36
OR60 329 45 8 23 24 417 540
OR60F 279 45 8 23 24 353 540
OR60F2 556 72 16 23 49 702 1,115
OR60F3 1,112 72 32 23 105 1,404 2,403

presenters who might need to present at a particular room for
accessibility or facilities issues.

Each of the above penalties is weighted by a corresponding non-
negative value from set 𝑊 = {𝑤𝛼 , 𝑤𝛽 , 𝑤𝛾 , 𝑤𝛿 , 𝑤𝜖 , 𝑤𝜁} so as to allow
the prioritisation of requests.

The goal is to assign all tracks into rooms and sessions, and assign
all submissions into sessions in such a way that weighted penalties
are minimised and all hard requirements are satisfied. Practically, the
problem requires the generation of two schedules, a high-level schedule
which indicates the room and sessions of each track, and a low-level
schedule indicating the room and session of each submission.

Penalties and weights are used to adjust scheduling preferences.
Setting different values for penalties allows the prioritisation of certain
requests. For example, if satisfying a certain Track-Session request is
more important than another Track-Session request, then we set a
greater penalty value for the more important one. In addition, we can
prioritise the type of requests that are more important to be satisfied
with the use of weights. For instance, if satisfying Submission-Room
requests is more important than Submission-Session requests, then we
set a greater weight value for Submission-Room requests. Thus, by
adjusting penalties and weights, we can explore different solutions
along with their trade-offs.

The motivation for this work originated from scheduling the Ge-
netic and Evolutionary Computation Conference (GECCO), the OR So-
ciety’s 60th Annual Conference (OR60), and the New to OR Conference
(N2OR) (Kheiri et al., 2024). We present the details of the instances in
Table 1. The characteristics give a rough idea about the size of each
instance, yet do not define a given problem fully as the importance of
violating a given constraint is not provided. The ratio of Required TS to
Available TS can give a rough assessment of hardness of each instance.

4. Methodology

In this section, we first discuss the benefits of using our proposed
spreadsheet template for conference scheduling problems. Then we pro-
vide an overview of the notation, followed by the formal formulation
of the exact model.

We use a spreadsheet file to store input data, which follows a
specific template that offers flexibility. This flexible template has been
created with the purpose of providing a generic approach suitable
for conference scheduling problems. By using a single data format
we want to minimise the need of modifying algorithms to fit specific
data formats provided by conferences. Instead of adjusting algorithms
each time, we could just transfer the given data to the template. In
addition, our template makes it easy to modify weights and scheduling

preferences. We present the spreadsheet file in detail in Appendix A.
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4.1. Model notation

Sets and indices. We use the following sets and their corresponding
ndices in our formulation:

𝑡 ∈  ∶ The set of tracks
𝑠𝑢 ∈  𝑡 ∶ The subset of submissions belonging to a track 𝑡
(𝑡, 𝑠𝑢) ∈   ∶ The set of submissions where

{(𝑡, 𝑠𝑢) ∶ 𝑡 ∈  and 𝑠𝑢 ∈  𝑡}
ℎ ∈  ∶ The set of humans involved in the conference
𝑝 ∈  ∶ The set of presenters
(𝑡, 𝑠𝑢) ∈   𝑝 ∶ The subset of submissions belonging to presenter 𝑝
𝑟 ∈  ∶ The set of rooms
𝑠 ∈  ∶ The set of sessions
𝑡𝑠 ∈  𝑠 ∶ The subset of time slots belonging to session 𝑠

Parameters. We use the following parameters in our formulation:

𝛼𝑡𝑠 ∶ Penalty for scheduling track 𝑡 into session 𝑠
𝑤𝛼 ∶ Weight of penalty 𝛼𝑡𝑠
𝛽𝑡𝑟 ∶ Penalty for scheduling track 𝑡 into room 𝑟
𝑤𝛽 ∶ Weight of penalty 𝛽𝑡𝑟
𝛾𝑠,𝑟 ∶ Penalty for utilising room 𝑟 within session 𝑠
𝑤𝛾 ∶ Weight of penalty 𝛾𝑠,𝑟
𝛿(𝑡,𝑠𝑢)𝑠 ∶ Penalty for scheduling submission (𝑡, 𝑠𝑢) within session 𝑠

for which the timezone is unsuitable
𝑤𝛿 ∶ Weight of penalty 𝛿(𝑡,𝑠𝑢)𝑠

𝜖(𝑡,𝑠𝑢)𝑠 ∶ Penalty for scheduling submission (𝑡, 𝑠𝑢) within session 𝑠

𝑤𝜖 ∶ Weight of penalty 𝜖(𝑡,𝑠𝑢)𝑠

𝜁 (𝑡,𝑠𝑢)𝑟 ∶ Penalty for scheduling submission (𝑡, 𝑠𝑢) into room 𝑟

𝑤𝜁 ∶ Weight of penalty 𝜁 (𝑡,𝑠𝑢)𝑟

𝑀𝑎𝑥𝑆𝑡 ∶ The upper bound on the number of required sessions of
track 𝑡

𝑛(𝑡,𝑠𝑢) ∶ The number of required time slots of submission (𝑡, 𝑠𝑢)
| 𝑠| ∶ The number of time slots within session 𝑠
|  𝑝

| ∶ The number of submissions belonging to presenter 𝑝
𝑀𝑝

𝑠 = 𝑚𝑖𝑛{|  𝑝
|, | 𝑠|} ∶ The upper bound on the number of

submissions that presenter 𝑝 could possibly present during
session 𝑠 (in the same room)

Decision variables. We use the following decision variables in our for-
mulation:

𝑍𝑡
𝑠,𝑟 ∈ {0, 1} ∶ 1 if track 𝑡 is scheduled in session 𝑠 and room 𝑟;

0 if not
𝑌 𝑡
𝑟 ∈ {0, 1} ∶ 1 if track 𝑡 is assigned room 𝑟; 0 if not

𝑋(𝑡,𝑠𝑢)
𝑠,𝑟 ∈ {0, 1} ∶ 1 if submission (𝑡, 𝑠𝑢) is scheduled in session 𝑠

and room 𝑟; 0 if not

4.2. Constraints

In the exact model we have the following (hard) constraints:

∑

𝑠∈

∑

𝑟∈
𝑋(𝑡,𝑠𝑢)

𝑠,𝑟 = 1 ∀ (𝑡, 𝑠𝑢) ∈   (1)

𝑀𝑝
𝑠𝑋

(𝑡,𝑠𝑢)
𝑠,𝑟 +

∑

𝑟′∈⧵{𝑟}

∑

(𝑡′ ,𝑠𝑢′)∈  𝑝

𝑋(𝑡′ ,𝑠𝑢′)
𝑠,𝑟′ ≤ 𝑀𝑝

𝑠 ∀ 𝑠 ∈  ,∀ 𝑟 ∈ ,∀ 𝑝 ∈  ,

∀ (𝑡, 𝑠𝑢) ∈   𝑝 (2)
∑

𝑟∈
𝑌 𝑡
𝑟 = 1 ∀ 𝑡 ∈  (3)

∑

𝑍 𝑡
𝑠,𝑟 −𝑀𝑎𝑥𝑆𝑡𝑌

𝑡
𝑟 ≤ 0 ∀ 𝑟 ∈ ,∀ 𝑡 ∈  (4)
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𝑠∈
𝑍

∑

𝑡∈
𝑍 𝑡

𝑠,𝑟 ≤ 1 ∀ 𝑠 ∈  ,∀ 𝑟 ∈  (5)

∑

𝑠𝑢∈ 𝑡

𝑛(𝑡,𝑠𝑢)𝑋(𝑡,𝑠𝑢)
𝑠,𝑟 − | 𝑠|𝑍

𝑡
𝑠,𝑟 ≤ 0 ∀ 𝑠 ∈  ,∀ 𝑟 ∈ ,∀ 𝑡 ∈  (6)

∑

𝑠𝑢∈ 𝑡

𝑋(𝑡,𝑠𝑢)
𝑠,𝑟 −𝑍 𝑡

𝑠,𝑟 ≥ 0 ∀ 𝑠 ∈  ,∀ 𝑟 ∈ ,∀ 𝑡 ∈  (7)

𝑡
𝑠,𝑟 ∈ {0, 1} ∀ 𝑡 ∈  ,∀ 𝑠 ∈  ,∀ 𝑟 ∈  (8)
𝑡
𝑟 ∈ {0, 1} ∀ 𝑡 ∈  ,∀ 𝑟 ∈  (9)
(𝑡,𝑠𝑢)
𝑠,𝑟 ∈ {0, 1} ∀ (𝑡, 𝑠𝑢) ∈   ,

∀ 𝑠 ∈  ,∀ 𝑟 ∈  (10)

The first set of constraints, Eq. (1), ensures that each submission
ust be scheduled into exactly one session and one room. The next

et of constraints, Eq. (2), resolves presenters conflicts, where (𝑡, 𝑠𝑢) ∈
 𝑝 ⊂   is a set of submissions including a presenter conflict

uch that |  𝑝
| > 1. For every presenter with multiple submissions,

his set of constraints handles conflicts depending on the track of such
ubmissions. If conflicting submissions belong to the same track, then
uch submissions are not allowed to be scheduled within different
ooms of the same session. On the other hand, if conflicting submissions
elong to different tracks, then such submissions are scheduled within
ifferent sessions.

Constraints within Eq. (3) ensure that exactly 1 room is allocated
o each track. Then we use ‘‘bigM’’ constraints, Eq. (4), to allocate
racks to their assigned room, where 𝑀𝑎𝑥𝑆𝑡 is the upper bound on the
otal number of sessions that a given track might require to fit all the
ubmissions. Although we could simply set 𝑀𝑎𝑥𝑆𝑡 equal to the total
umber of sessions, we introduced this scenario to decrease the value of
𝑎𝑥𝑆𝑡 so as to strengthen our formulation. The scenario assumes that
track will utilise at most 𝑀𝑎𝑥𝑆𝑡 sessions, where 𝑀𝑎𝑥𝑆𝑡 is given by

orting sessions in ascending order based on their number of time slots
nd sessions are added until the number of time slots is greater or equal
o the number of time slots that the given track requires. For example,
uppose ‘‘Forecasting’’ track has 6 submissions and ‘‘Simulation’’ track
as 4 submissions, each requiring one time slot, and four sessions are
vailable with the following number of time slots: 4, 3, 2, 2. We sort the
essions (2, 2, 3, 4) and set 𝑀𝑎𝑥𝑆𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔 = 3 because 2+2+3 ≥ 6, and
𝑎𝑥𝑆𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 2 because 2 + 2 ≥ 4, rather than setting 𝑀𝑎𝑥𝑆 = 4 for

oth tracks.
Constraints Eq. (5) ensure that at most one track is scheduled into

very given session and room. Based on the assignment of Eq. (4),
‘bigM’’ constraints Eq. (6) ensure that at most | 𝑠| submissions are
llowed to be scheduled into the corresponding session and room,
here | 𝑠| is the number of available time slots corresponding to

ession 𝑠 ∈ , and 𝑛(𝑡,𝑠𝑢) is the total number of time slots that a
iven submission requires. For instance, suppose track ‘‘Forecasting’’
s assigned into session ‘‘9–11am’’ and room ‘‘A’’, which is defined
s 𝑍𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔

9−11𝑎𝑚,𝐴 = 1. Also, suppose session ‘‘9–11am’’ has 3 time slots
vailable | 9−11𝑎𝑚| = 3 and all 𝑛(𝑡,𝑠𝑢) = 1, then at most 3 submissions
orresponding to track ‘‘Forecasting’’ are allowed to be scheduled into
ession ‘‘9–11am’’ and room ‘‘A’’. The next set of constraints, Eq. (7),
nsures that a given track is not assigned into a session-room pair
or which no submissions are scheduled. In other words, we prevent
𝑡
𝑠,𝑟 = 1 if none of the submissions is scheduled within the given session
nd room. Lastly, Eqs. (8), (9), and (10) indicate that our decision
ariables 𝑍𝑡

𝑠,𝑟, 𝑌 𝑡
𝑟 , and 𝑋(𝑡,𝑠𝑢)

𝑠,𝑟 are binary.

.3. Objective

Recall from Section 4.1 that 𝑍𝑡
𝑠,𝑟 is a binary decision variable which

s used for assigning tracks into sessions, where track 𝑡 ∈  , session 𝑠 ∈
, and room 𝑟 ∈ , e.g., when 𝑍𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔

9−11𝑎𝑚,𝐴 = 1 then track ‘‘Forecasting’’
s allocated into session ‘‘9–11am’’ and room ‘‘A’’. The coefficient of
𝑡 𝑡 𝑡 𝑡

𝑠,𝑟 is a weighted sum of penalties 𝛼𝑠, 𝛽𝑟, and 𝛾𝑠,𝑟. Penalty 𝛼𝑠 is
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∑

𝛾

incurred for scheduling a specific track into a specified session (Tracks-
Sessions penalty) weighted by 𝑤𝛼 . Penalty 𝛽𝑡𝑟 is incurred for scheduling

specific track into a specified room (Tracks-Rooms penalty) weighted
y 𝑤𝛽 , and penalty 𝛾𝑠,𝑟 is incurred for utilising a specific room within
specified session (Sessions-Rooms penalty) weighted by 𝑤𝛾 .

Recall also that 𝑋(𝑡,𝑠𝑢)
𝑠,𝑟 is a binary decision variable which is used

o schedule submissions into sessions, where submission (𝑡, 𝑠𝑢) ∈  
orresponds to track 𝑡 ∈  , session 𝑠 ∈ , and room 𝑟 ∈ , e.g., when
(𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔,𝐹𝐶1)
9−11𝑎𝑚,𝐴 = 1 this means that submission ‘‘FC1’’ corresponding

o track ‘‘Forecasting’’ is scheduled in session ‘‘9–11am’’ and room ‘‘A’’.
he coefficient of variable 𝑋(𝑡,𝑠𝑢)

𝑠,𝑟 is a weighted sum of 𝛿(𝑡,𝑠𝑢)𝑠 , 𝜖(𝑡,𝑠𝑢)𝑠 , and
𝜁 (𝑡,𝑠𝑢)𝑟 . Penalty 𝛿(𝑡,𝑠𝑢)𝑠 is a penalty for assigning a specific submission
within a session for which the timezone is unsuitable (Submissions-
Timezones penalty) weighted by 𝑤𝛿 . e.g., a submission is scheduled
within a session that is unsuitable for the timezone of the presenter
(03:00 am). Penalty 𝜖(𝑡,𝑠𝑢)𝑠 is a penalty for scheduling a specific submis-
sion within a specified session (Submissions-Sessions penalty) weighted
by 𝑤𝜖 , and 𝜁 (𝑡,𝑠𝑢)𝑟 is a penalty for assigning a specific submission into a
specified room (Submissions-Rooms penalty) weighted by 𝑤𝜁 .

Based on the above, we formulate the following objective for the
exact model:

min
∑

𝑠∈

∑

𝑟∈

∑

𝑡∈
(𝑤𝛼𝛼

𝑡
𝑠 +𝑤𝛽𝛽

𝑡
𝑟 +𝑤𝛾𝛾𝑠,𝑟)𝑍𝑡

𝑠,𝑟

+
∑

𝑠∈

∑

𝑟∈

∑

(𝑡,𝑠𝑢)∈ 
(𝑤𝛿𝛿

(𝑡,𝑠𝑢)
𝑠 +𝑤𝜖𝜖

(𝑡,𝑠𝑢)
𝑠 +𝑤𝜁 𝜁

(𝑡,𝑠𝑢)
𝑟 )𝑋(𝑡,𝑠𝑢)

𝑠,𝑟
(11)

he objective function, Eq. (11), assigns tracks into rooms and sessions,
nd submissions into sessions by minimising the penalties associated
ith both tracks and submissions. To reduce the size and complexity
f the model, we assign submissions into time slots of sessions in a
ost-processing algorithm after the IP model is solved. Even though
e generate a low-level schedule with a post-processing algorithm, it is

till possible for organisers to rearrange the order of submissions within
he same session without any impact on the quality of the solution.
ote that Eq. (11) implies that ∑𝑠∈

∑

𝑟∈
∑

(𝑡,𝑠𝑢)∈  𝑋(𝑡,𝑠𝑢)
𝑠,𝑟 = |  |,

here |  | is a constant (the number of submissions). However, the
um of 𝑍𝑡

𝑠,𝑟 is not a constant which may result in some 𝑍𝑡
𝑠,𝑟 variables

eing equal to 1 without any submissions scheduled during a given
ession and room. We resolve this by including constraints Eq. (7).
lternatively, one could use (1 + 𝑤𝛼𝛼𝑡𝑠 + 𝑤𝛽𝛽𝑡𝑟 + 𝑤𝛾𝛾𝑠,𝑟) as a coefficient
f 𝑍𝑡

𝑠,𝑟 to ensure that variables, for which the sum of penalties is zero,
re minimised.

. Computational results

In this section, we present the results of the exact model which
as tested on a number of real and artificial instances. For the real

nstances, we obtained past data and scheduling preferences informa-
ion which were used to set penalties values and weights. The artificial
nstances were created due to a particular instance being infeasible and
o test the models on larger instances. All instances and models are
reely available at Kheiri et al. (2024).

The results were generated on an i7-11370H CPU Intel Processor
ith 8 cores at 3.30 GHz with 16.00 GB RAM. We used Python 3.8.3

o build our models which were solved using Gurobi 9.5.0. We use the
ollowing Gurobi parameters for the exact model; 𝑀𝐼𝑃𝐺𝑎𝑝 = 0 and
𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡 = 3600. The former parameter allows the solver to terminate
nly when the gap between the lower and upper objective bound is
ero, while the latter parameter implies a time limit of one hour. Note
hat even though the time required to build the models is negligible for
ome instances, it is significant for other instances. We report the time
equired to build the models for each instance in Appendix B.

In Table 2, we present the penalty values that were used for each
ype of constraint. For example, in GECCO19 instance, we set 𝛽𝑡𝑟 = 10

𝑡
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or cases that are less important to be satisfied, while we set 𝛽𝑟 = 10 000
Table 2
Penalty Values: 𝛼𝑡

𝑠 indicates values for Tracks-Sessions penalties, 𝛽𝑡𝑟 indicates val-
ues for Tracks-Rooms penalties, 𝛾𝑠,𝑟 indicates values for Sessions-Rooms penalties,
𝛿(𝑡,𝑠𝑢)𝑠 indicates values for Submissions-Timezones penalties, 𝜖(𝑡,𝑠𝑢)𝑠 indicates values
for Submissions-Sessions penalties, and 𝜁 (𝑡,𝑠𝑢)𝑟 indicates values for Submissions-Rooms
penalties. When a type of penalties is not used, it is denoted as ‘‘–’’.

Instance 𝛼𝑡
𝑠 𝛽𝑡𝑟 𝛾𝑠,𝑟 𝛿(𝑡,𝑠𝑢)𝑠 𝜖(𝑡,𝑠𝑢)𝑠 𝜁 (𝑡,𝑠𝑢)𝑟

N2OR – – – – [1] –
GECCO19 [10000] [10, 10000] – – [1] –
GECCO20 [10000] [10, 10000] [10000] – [1, 10] –
GECCO21 [10000] [10, 10000] – [1, 10] [10000] –
OR60 [10, 100] [1, 100] [1000] – [1] –
OR60F [10, 100] [1, 100] [1000] – [1] –
OR60F2 [10, 100] [1, 100] [1000] – [1] –
OR60F3 [10, 100] [1, 100] [1000] – [1] –

Table 3
Exact Model Results: Objective indicates the aggregation of penalties caused by
violations of soft constraints, Gap indicates the relative gap between the two objective
bounds, and Time indicates the required time for the solver to terminate in seconds.
N/A indicates the value is not available.

Instance Variables Constraints Objective Gap (%) Time (s)

N2OR 720 347 0 0.000 0.1
GECCO19 30,320 26,911 1,000,010 0.001 3,600.0
GECCO20 10,384 5,750 6,110 0.000 8.3
GECCO21 8,136 4,797 11,130 0.000 19.7
OR60 69,851 36,185 Infeasible N/A 3.6
OR60F 60,651 30,983 424 0.000 13.9
OR60F2 232,760 77,724 10 0.000 88.9
OR60F3 873,080 153,720 0 0.000 137.4

Table 4
Exact Model Violations: 𝛼’s indicates incurred weighted Tracks-Sessions penalties (i.e.,

𝑠∈
∑

𝑟∈
∑

𝑡∈ 𝑤𝛼𝛼𝑡
𝑠𝑍

𝑡
𝑠,𝑟), 𝛽’s indicates incurred weighted Tracks-Rooms penalties,

’s indicates incurred Sessions-Rooms penalties, 𝛿’s indicates incurred Submissions-
Timezones penalties, 𝜖’s indicates incurred Submissions-Sessions penalties, and 𝜁 ’s
indicates incurred Submissions-Rooms penalties. When a type of penalties is not used,
it is denoted as ‘‘–’’. N/A indicates the value is not available.

Instance 𝛼’s 𝛽’s 𝛾 ’s 𝛿’s 𝜖’s 𝜁 ’s Total

N2OR – – – – 0 – 0
GECCO19 1,000,000 10 – – 0 – 1,000,010
GECCO20 0 10 0 – 6,100 – 6,110
GECCO21 0 30 – 11,100 0 – 11,130
OR60 N/A N/A N/A – N/A – N/A
OR60F 400 0 0 – 24 – 424
OR60F2 0 0 0 – 10 – 10
OR60F3 0 0 0 – 0 – 0

for significant cases. Penalty values reflect the importance of satisfying
the particular constraint.

For most instances we keep all weights identical and equal to one
(𝑤𝛼 = 𝑤𝛽 = 𝑤𝛾 = 𝑤𝛿 = 𝑤𝜖 = 𝑤𝜁 = 1). The only exception in which we
set different weights is for the GECCO conferences where we use the
following weights; 𝑤𝛼 = 100, 𝑤𝛾 = 10, and 𝑤𝜖 = 100. In addition, we
set 𝑤𝛿 = 100 for GECCO21 which was held online.

Our results are summarised in Table 3 and we present in detail
the violations of soft constraints in Table 4. For each instance, we set
a time limit of one hour and we report the number of variables and
constraints, the objective value, the gap which shows the relative gap
between the two objective bounds, and the time required for the solver
to terminate in seconds. An infeasible status for the objective means
that the solution is infeasible. Additionally, note that even though we
include the Submission-Room request (𝜁 (𝑡,𝑠𝑢)𝑟 ) in the model, there is no
available data for this request.

Our model obtained the optimal solution for the N2OR conference
instantly without any violations. The model achieved a solution with
a relative gap of 0.001% within 17 s for GECCO19, but the optimal
solution was not found within the time limit of 1 h. The solution had
1 violation for Tracks-Sessions requests (𝑤 × 𝛼𝑡 = 100 × 10, 000 =
𝛼 𝑠
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(

𝑀

𝐾

1, 000, 000) and 1 violation for Tracks-Rooms requests (𝑤𝛽 × 𝛽𝑡𝑟 =
× 10 = 10). GECCO20 had 1 violation for Tracks-Rooms requests
𝑤𝛽 × 𝛽𝑡𝑟 = 1 × 10 = 10) and 16 violations for Submissions-Sessions
equests (𝑤𝜖 × (11 × 𝜖(𝑡,𝑠𝑢)𝑠 + 5 × 𝜖(𝑡,𝑠𝑢)𝑠 ) = 100 × (11 × 1 + 5 × 10) = 6, 100).
he solution of GECCO21 had 3 violations for Tracks-Rooms requests
𝑤𝛽×3×𝛽𝑡𝑟 = 1×3×10 = 30) and 30 violations for Submissions-Timezones
equests (𝑤𝛿 × (21 × 𝛿(𝑡,𝑠𝑢)𝑠 + 9× 𝛿(𝑡,𝑠𝑢)𝑠 ) = 100 × (21 × 1+ 9× 10) = 11,100).
R60 had some extensive tracks that resulted in infeasibility due to
onstraints Eqs. (6) and (7). In other words, the number of available
essions was not enough to avoid scheduling the same track in parallel,
nd consequently tracks could not be limited to utilise only one room.
herefore, we reduced the instance by removing submissions of such
racks to create a feasible version of OR60, which we refer to as OR60F.
he model found the optimal solution which had 4 violations for
racks-Sessions requests (𝑤𝛼×4×𝛼𝑡𝑠 = 1×4×100 = 400) and 24 violations
or Submissions-Sessions requests (𝑤𝜖 × 24 × 𝜖(𝑡,𝑠𝑢)𝑠 = 1 × 24 × 1 = 24).
R60F2 and OR60F3 are both larger versions of the OR60 instance. The

olution of the former instance had only 10 violations for Submissions-
essions requests (𝑤𝜖 × 10 × 𝜖(𝑡,𝑠𝑢)𝑠 = 1 × 10 × 1 = 10), while the solution
f the latter instance had no violations.

.1. Infeasible instances

Sometimes, it is not possible to completely schedule each track into
xactly one room, which results in an infeasible model (e.g., OR60). A
olution to this issue is to relax constraints Eq. (3) by changing the right
and side to ≤ 𝑀𝑎𝑥𝑅𝑡, where 𝑀𝑎𝑥𝑅𝑡 is the maximum number of rooms
hat could be assigned to a track. We followed this procedure for the
R60 instance which we describe next. Firstly, we identified the four

racks that required more than one room to be scheduled. Specifically,
hree tracks had to utilise 2 rooms and one track had to utilise 3 rooms.
owever, the model was still infeasible because of presenters conflicts
nd we had to further relax constraints Eq. (3). After changing the right
and side value several times, we found a feasible model in which
wo tracks utilise 2 rooms, one track utilises 3 rooms, and one track
tilises 4 rooms. Our model found the optimal solution within 51.2 s
hich had an objective value of 106. The solution had 1 violation for
racks-Sessions requests (𝑤𝛼 × 𝛼𝑡𝑠 = 1 × 100 = 100), 3 violations for
racks-Rooms requests (𝑤𝛽 ×3× 𝛽𝑡𝑟 = 1×3× 1 = 3), and 3 violations for
ubmissions-Sessions requests (𝑤𝜖 × 3 × 𝜖(𝑡,𝑠𝑢)𝑠 = 1 × 3 × 1 = 3).

6. Extended formulation

In this section, we present an extension of our formulation in
which we consider additional constraints including some with non-
linear terms. We first provide additional definitions, followed by a
discussion of the additional soft and hard requirements. Next, we
present the formal formulation of the extended model and we conclude
the section by presenting computational results.

We refer to an ‘‘attendee’’ as a person who is a spectator of a
submission, and define a set   𝑎 which includes the submissions that
he attendee 𝑎 ∈  ⊆  wishes to attend. A ‘‘track chair’’ is defined as
he person who attends all the submissions of a track, and the set  𝑐

onsists of tracks chaired by the same person 𝑐 ∈  ⊆ . Note that a
uman is allowed to have multiple roles and may attend a conference
s a presenter, an attendee, and a track chair.

We consider the following additional hard requirements:

• Avoid scheduling similar tracks in parallel: Organisers can
specify some tracks as being similar and request not to schedule
such tracks in parallel. For each track 𝑡 we denote a set  𝑡 ⊂ 
of similar tracks including 𝑡.

• Schedule must be free of attendees conflicts: For attendees
who have declared attending preferences, we either schedule such
submissions within the same room of a session or within different
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sessions to resolve conflicts.
• Schedule must be free of track chairs conflicts: In case of
a track chair being responsible for more than one track, we
schedule such tracks within different sessions.

Additionally, we consider the following soft requirement:

• Consecutive track sessions: Tracks are preferred to be scheduled
in consecutive sessions to achieve a cohesive schedule.

The additional soft requirement, is weighted by a non-negative value
𝜋𝐾 . This weight, however, is a subsidy, not penalty, and therefore it
has a negative sign as the objective is to be minimised. We model
the consecutive tracks requirement as 𝑍𝑡

𝑠,𝑟 × 𝑍𝑡
𝑠+1,𝑟 which decreases

the objective value by 𝜋𝐾 when a track 𝑡 is scheduled consecutively
within sessions 𝑠 and 𝑠 + 1. For instance, suppose we need to schedule
rack ‘‘Forecasting’’ into room ‘‘A’’ and two sessions from the set 𝑆 =
9 − 11𝑎𝑚, 11 − 1𝑝𝑚, 1 − 3𝑝𝑚} are required. If ‘‘9–11am’’ and ‘‘1–3 pm’’
essions are used, then 𝑍𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔

9−11𝑎𝑚,𝐴 × 𝑍𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔
11−1𝑝𝑚,𝐴 = 1 × 0 = 0 and

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔
11−1𝑝𝑚,𝐴 × 𝑍𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔

1−3𝑝𝑚,𝐴 = 0 × 1 = 0. On the other hand, if either ‘‘9–
1am’’ and ‘‘11–1 pm’’ or ‘‘11–1 pm’’ and ‘‘1–3 pm’’ are used, then
e prefer any of these combinations which would result in decreasing

he objective value by 𝜋𝐾 given that none other penalties are incurred.
ote that the more consecutive variables become equal to 1, the fewer

he violations of the consecutive tracks soft constraint is achieved. By
ncluding the additional soft requirement in Eq. (11), we achieve the
ollowing objective function with non-linear terms:

min
∑

𝑠∈

∑

𝑟∈

∑

𝑡∈
(𝑤𝛼𝛼

𝑡
𝑠 +𝑤𝛽𝛽

𝑡
𝑟 +𝑤𝛾𝛾𝑠,𝑟)𝑍𝑡

𝑠,𝑟 (12)

+
∑

𝑠∈

∑

𝑟∈

∑

(𝑡,𝑠𝑢)∈ 
(𝑤𝛿𝛿

(𝑡,𝑠𝑢)
𝑠 +𝑤𝜖𝜖

(𝑡,𝑠𝑢)
𝑠 +𝑤𝜁 𝜁

(𝑡,𝑠𝑢)
𝑟 )𝑋(𝑡,𝑠𝑢)

𝑠,𝑟

−𝜋𝐾 ×
∑

𝑠∈⧵{𝑆}

∑

𝑟∈

∑

𝑡∈
𝑍𝑡

𝑠,𝑟 ×𝑍𝑡
𝑠+1,𝑟

hen, we convert the non-linear terms of the objective function into
inear by introducing new binary variables. Let 𝐾 𝑡

𝑠,𝑟 be a product vari-
ble of 𝑍𝑡

𝑠,𝑟 and 𝑍𝑡
𝑠+1,𝑟 which is used to schedule tracks in a consecutive

anner.

.1. Constraints

In the extended model we have the following (hard) constraints:

1) − (10)

∑

𝑟∈𝑅

∑

𝑡′∈𝑇 𝑡

𝑍 𝑡′
𝑠,𝑟 ≤ 1 ∀ 𝑠 ∈  ,∀ 𝑡 ∈  (13)

𝑎
𝑠𝑋

(𝑡,𝑠𝑢)
𝑠,𝑟 +

∑

𝑟′∈⧵{𝑟}

∑

(𝑡′ ,𝑠𝑢′)∈  𝑎

𝑋(𝑡′ ,𝑠𝑢′)
𝑠,𝑟′ ≤ 𝑀𝑎

𝑠 ∀ 𝑠 ∈  ,∀ 𝑟 ∈ ,∀ 𝑎 ∈ ,

∀ (𝑡, 𝑠𝑢) ∈   𝑎 (14)

∑

𝑟∈

∑

𝑡𝑐∈ 𝑐⊂
𝑍𝑡𝑐

𝑠,𝑟 ≤ 1 ∀ 𝑠 ∈  ,∀ 𝑐 ∈  (15)

𝑡
𝑠,𝑟 ≤ 𝑍𝑡

𝑠,𝑟 ∀ 𝑡 ∈  ,∀ 𝑟 ∈ ,∀ 𝑠 ∈  ⧵ {𝑆} (16)

𝐾 𝑡
𝑠,𝑟 ≤ 𝑍𝑡

𝑠+1,𝑟 ∀ 𝑡 ∈  ,∀ 𝑟 ∈ ,∀ 𝑠 ∈  ⧵ {𝑆} (17)

𝐾 𝑡
𝑠,𝑟 ≥ 𝑍𝑡

𝑠,𝑟 +𝑍𝑡
𝑠+1,𝑟 − 1 ∀ 𝑡 ∈  ,∀ 𝑟 ∈ ,∀ 𝑠 ∈  ⧵ {𝑆} (18)

𝐾 𝑡
𝑠,𝑟 ∈ {0, 1} ∀ 𝑡 ∈  ,∀ 𝑟 ∈ ,∀ 𝑠 ∈  ⧵ {𝑆} (19)

Constraints Eq. (13) prevent scheduling specified tracks in parallel,
where  𝑡 ⊂  is a set of similar tracks such that | 𝑡

| > 1. The next
set of constraints, Eq. (14), resolves attendees conflicts, where (𝑡, 𝑠𝑢) ∈
  𝑎 ⊂   is a set of submissions including an attendee conflict
such that |  𝑎

| > 1. In addition, 𝑀𝑎
𝑠 is an upper bound on the

number of declared submissions that attendee 𝑎 could possibly attend
during session 𝑠 given by 𝑚𝑖𝑛{|𝑇𝑆𝑈𝑎

|, | 𝑠|}, where |𝑇𝑆𝑈𝑎
| is the
number of declared submissions by attendee 𝑎. For every attendee with
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multiple declared submissions, this set of constraints handles conflicts
depending on the track of such submissions. If conflicting submissions
belong to the same track, then such submissions are not allowed to
be scheduled within different rooms of the same session. On the other
hand, if conflicting submissions belong to different tracks, then such
submissions are scheduled within different sessions. The next set of
constraints, Eq. (15), resolves track chairs conflicts, where 𝑡𝑐 ∈  𝑐 ⊂ 
is a set of tracks including a track chair conflict such that | 𝑐

| > 1.
For every track chair responsible for more than one track, this set of
constraints ensures that such tracks are not scheduled within the same
session. Constraints from Eq. (16) up to Eq. (18) introduce auxiliary
variables 𝐾 𝑡

𝑠,𝑟 which we will use to convert the non-linear terms in
the objective into linear terms, while constraints Eq. (19) indicate that
these variables are binary.

6.2. Objective

After replacing the non-linear terms in Eq. (12), we obtain the
following objective function:

min
∑

𝑠∈

∑

𝑟∈

∑

𝑡∈
(𝑤𝛼𝛼

𝑡
𝑠 +𝑤𝛽𝛽

𝑡
𝑟 +𝑤𝛾𝛾𝑠,𝑟)𝑍𝑡

𝑠,𝑟 (20)

+
∑

𝑠∈

∑

𝑟∈

∑

(𝑡,𝑠𝑢)∈ 
(𝑤𝛿𝛿

(𝑡,𝑠𝑢)
𝑠 +𝑤𝜖𝜖

(𝑡,𝑠𝑢)
𝑠 +𝑤𝜁 𝜁

(𝑡,𝑠𝑢)
𝑟 )𝑋(𝑡,𝑠𝑢)

𝑠,𝑟

−𝜋𝐾 ×
∑

𝑠∈

∑

𝑟∈

∑

𝑡∈
𝐾 𝑡

𝑠,𝑟

The new objective function, Eq. (20), generates a schedule by min-
imising the penalties related to both tracks and submissions, and the
violations regarding consecutive track sessions.

6.3. Computational results

We use the same weights for the extended model as we did for the
exact model. Additionally, we use the following weight for consecutive
track sessions; 𝜋𝐾 = 10. We also used the same Gurobi parameters
and included an additional parameter; 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑖𝑡𝑦𝐹𝑜𝑐𝑢𝑠 = 1, which
forces variables to take exact integer values. This additional parameter
was used because we noticed that sometimes ‘‘bigM’’ constraints were
violated due to variables that meant to be zero, instead took non-trivial
values. As a result of this side-effect, infeasible solutions were accepted
by the solver. The exact model was free of this side-effect and therefore
we did not use that parameter.

For the extended model, the objective values have been computed
through evaluation functions in order to obtain the objective value of
the exact model, because the objective value of the extended model
itself does not provide reliable information regarding the quality of the
solution. In Table 5 we present the penalties along with constraints for
each instance, and in Table 6 we present the results. An infeasible status
for the objective means that the model is infeasible, while unknown
indicates that the solver did not find a feasible solution within the
time limit of one hour (3,600 s). The extended model is significantly
larger compared to the exact model in the number of variables and
especially in the number of constraints. Note that even though we
include attendees and track chair conflicts in the model, we do not have
available real data for these constraints.

In Table 7, we present in detail the violations of soft constraints
for the extended model. The optimal solution was found for the N2OR
instance, which had only 1 violation for a Submissions-Sessions request
(𝑤𝜖 × 𝜖(𝑡,𝑠𝑢)𝑠 = 1 × 1 = 1). For GECCO19, the model found the optimal
solution, which had 2 violations for Tracks-Sessions (𝑤𝛼 × 2 × 𝛼𝑡𝑠 =
100 × 2 × 10, 000 = 2, 000, 000) and 7 violations regarding consecutive
tracks (𝜋𝐾 × 7 × 𝐾 = 10 × 7 × 1 = 70). The model achieved the optimal
solution for GECCO20 with the following violations; 1 violation for
Tracks-Rooms (𝑤𝛽×𝛽𝑡𝑟 = 1×10 = 10), 4 violations for consecutive tracks
(𝜋𝐾 ×4×𝐾 = 10×4×1 = 40), and 14 violations for Submissions-Sessions

(𝑡,𝑠𝑢) (𝑡,𝑠𝑢)
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(𝑤𝜖 ×(7×𝜖𝑠 +7×𝜖𝑠 ) = 100×(7×1+7×10) = 7, 700). The solution of
Table 5
Penalties & Constraints: Penalties indicate the number of penalties, conflicts indicate
the number of all conflict types, and similar tracks indicates the number of similar
tracks.

Instance Penalties Conflicts Similar tracks

N2OR 10 1 1
GECCO19 405 149 12
GECCO20 290 54 15
GECCO21 112 42 11
OR60 1,478 98 15
OR60F 1,382 70 0
OR60F2 2,059 70 0
OR60F3 3,457 70 0

Table 6
Extended Model Results: Objective indicates the aggregation of penalties caused by
violations of soft constraints, Gap indicates the relative gap between the two objective
bounds, and time indicates the required time for the solver to terminate in seconds.
N/A indicates the value is not available.

Instance Variables Constraints Objective Gap (%) Time (s)

N2OR 816 671 1 0.00 0.8
GECCO19 33,800 38,950 2,000,070 0.00 57.5
GECCO20 11,536 10,095 7,750 0.00 51.8
GECCO21 9,216 8,541 11,130 0.00 20.5
OR60 77,096 58,016 Infeasible N/A 4.8
OR60F 67,896 52,718 433 2.50 3,600.0
OR60F2 257,600 152,244 Unknown N/A 3,600.0
OR60F3 924,416 307,728 Unknown N/A 3,600.0

Table 7
Extended Model Violations: 𝐾 ’s indicates incurred weighted penalties of consecutive
tracks (other notation as in Table 4).

Instance 𝛼’s 𝛽’s 𝛾 ’s 𝛿’s 𝜖’s 𝜁 ’s 𝐾 ’s Total

N2OR – – – – 1 – 0 1
GECCO19 2,000,000 0 – – 0 – 70 2,000,070
GECCO20 0 10 0 – 7,700 – 40 7,750
GECCO21 0 30 – 11,100 0 – 0 11,130
OR60 N/A N/A N/A – N/A – N/A N/A
OR60F 400 0 0 – 33 – 0 433
OR60F2 N/A N/A N/A – N/A – N/A N/A
OR60F3 N/A N/A N/A – N/A – N/A N/A

GECCO21 is also optimal with 3 violations for Tracks-Rooms requests
(𝑤𝛽×3×𝛽𝑡𝑟 = 1×3×10 = 30) and 30 violations for Submissions-Timezones
requests (𝑤𝛿×(21×𝛿

(𝑡,𝑠𝑢)
𝑠 +9×𝛿(𝑡,𝑠𝑢)𝑠 ) = 100×(21×1+9×10) = 11,100). The

time limit was reached for OR60F where the model achieved a solution
with a 2.5% optimality gap. The solution had 4 violations for Tracks-
Sessions requests (𝑤𝛼 ×4× 𝛼𝑡𝑠 = 1×4×100 = 400), and 33 violations for
Submissions-Sessions requests (𝑤𝜖 × 33 × 𝜖(𝑡,𝑠𝑢)𝑠 = 1 × 33 × 1 = 33). For
the remaining instances, OR60F2 and OR60F3, the model reached the
time limit without finding any solution.

6.3.1. Infeasible instances
We modified our extended model as in Section 5.1 and tried to

solve OR60, however, this time our model was still infeasible due to
constraints Eq. (13) that prevent scheduling similar tracks in parallel.
We first tried to identify which particular constraints to relax from
Eq. (13), but it was not a straightforward task. Therefore, we had to
remove some similar tracks restrictions which decreased the number
of similar tracks from 15 to 8. Specifically, we removed six tracks that
were labelled as similar with one track, and another pair of tracks. This
led to a feasible model which reached the time limit of one hour and
returned a solution with an objective value of 143. The solution had
1 violation for Tracks-Sessions requests (𝑤𝛼 × 𝛼𝑡𝑠 = 1 × 100 = 100), 30
violations for Tracks-Rooms requests (𝑤𝛽 × 30 × 𝛽𝑡𝑟 = 1 × 30 × 1 = 30),
and 13 violations for Submissions-Sessions requests (𝑤𝜖 × 13 × 𝜖(𝑡,𝑠𝑢)𝑠 =

1 × 13 × 1 = 13).
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7. Conclusion

This work has provided two integer programming models along
with a generic approach to address conference scheduling problems.
We have shown that our approach generates low-level schedules for
conferences in a fully automated manner. Our weighted penalty system
allows the exploration of multiple solutions by adjusting the weights of
the soft constraints. An easy-to-use spreadsheet template is used to fit
the needs of different conferences. Apart from in-person conferences,
we have considered timezone constraints in this work which also makes
it suitable for scheduling hybrid and online conferences. We have
demonstrated the suitability of our mathematical models by testing
them on real data from five different conferences and on additional
artificial instances. The results have shown the success of the exact
model in finding optimal solutions for almost all instances. The ex-
tended model also found optimal and near-optimal solutions for some
instances, and revealed some limitations due to its increased size and
the complexity of some constraints.

The additional constraints in the extended model add much more
complexity, but we believe such constraints are essential for conference
scheduling. Having many hard constraints brings limitations to our
models in terms of feasibility. In addition, some conferences have to
schedule same tracks in parallel due to limited number of sessions,
such as OR60. Ideally, to achieve a more robust generic approach, we
would want to convert most hard constraints into soft so as to explore
additional trade-offs and solutions. However, such a mathematical
model would be too slow in terms of computational time. Therefore,
in order to overcome such limitations, we suggest the investigation of
alternative methods for future research, such as heuristics (Pylyavskyy
et al., 2020), to develop an approach to the largest and most complex
conference scheduling problems. Lastly, in our future work along with
developing heuristics, we will also consider the submissions ordering
constraint, which will allow organisers to express preferences regarding
the presentation sequence of submissions within their tracks.
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ppendix A

In this section, we provide a sample spreadsheet file to demonstrate
ts usage. The spreadsheet file consists of the following sheets; Sub-
issions, Tracks, Sessions, Rooms, Parameters, Tracks-Sessions Penalty,
racks-Rooms Penalty, Similar Tracks, and Sessions-Rooms Penalty.

The Submissions sheet includes all the necessary information re-
arding submissions as well as submissions related penalties as shown
n Fig. 1. Column A contains the reference name or ID of each sub-
ission. Column B indicates the track name of the corresponding

ubmission. Column C is used to indicate the number of time slots that
ach submission requires. Column D is ignored in our model. Column
refers to the timezone in which the presenters of the corresponding

ubmission are located. Column F is used to list the presenter or
ultiple presenters of the corresponding submission. Similarly, column
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is used to list the attendees. This column may include non-presenters,
such as co-authors, but it may also include presenters. The latter case
will be considered as an attendee conflict during optimisation. The next
number of columns is determined by the total number of available ses-
sions, where each column corresponds to a session (from column H to
column K in this example). Under these columns a penalty value may be
set accordingly so as not to schedule the corresponding submission into
the corresponding session. For instance, Submission_7 must be ideally
scheduled in Session_1 or in Session_2 so we keep these values empty.
Additionally, we do not want to schedule Submission_7 in Session_3 or
Session_4, but if that cannot be fully satisfied then we prefer Session_3.
To do so, we set a penalty value of 1 for Session_3 and a penalty value
of 10 for Session_4. Then, the number of the remaining columns is
determined by the total number of available rooms, where each column
corresponds to a room (from column L to column O in this example).
Within these columns a penalty value may be set accordingly so as
not to schedule the corresponding submission into the corresponding
room. For example, if we want Submission_9 scheduled in Room_2, we
penalise all rooms except for Room_2.

The Tracks sheet contains information regarding track names and
the list of track chair names as presented in Fig. 2.

In column A, the tracks are listed, and column B contains the names
of track chairs for each track. Each track is not limited to only one track
chair, it may have multiple track chairs. A chair conflict is created in
case there are two tracks with the same person as track chair. If any
of the track chairs is also a presenter in another track, then this will
be considered as a presenter conflict. Lastly, an attendee conflict is
created when the same person is a track chair and at the same time
is an attendee at a submission that belongs to another track.

Next, the Sessions sheet contains all the necessary information
regarding available sessions as displayed in Fig. 3. Column A includes
the names of the sessions. Column B refers to the total number of
available time slots per session. Column C indicates the date for each
session, while column D and E are used to set the starting and ending
time for each session respectively.

We skip the Rooms sheet as it simply contains the names of the
available rooms. The Parameters sheet includes settings for hybrid or
online conferences, and allows to set weight values for penalties as
shown in Fig. 4. Columns A and B are associated with settings regarding
hybrid or online conferences. The local timezone field refers to the
timezone that applies at the location of the conference. Next, suitable
scheduling times fields indicate the ideal scheduling time window for
which submissions are not penalised. Less suitable scheduling times
fields create a new time window for which submissions are slightly
penalised, while unsuitable scheduling times are heavily penalised sub-
missions. All times are converted into local times of online presenters.
For instance, a submission would be penalised by 1 if the converted
local time of the presenter is between 7:00 and 9:30 or between 21:30
and 23:00. If the converted local time is between 23:00 and 7:00
then a penalty of 10 will apply, otherwise if the converted local time
is between 9:30 and 21:30 then no penalty applies. These settings
are used to identify suitable sessions that are convenient for online
presenters. Lastly, columns D and E are used to set the weight values.
Setting different weight values allows the prioritisation of the listed
types of penalties.

The Tracks-Sessions Penalty sheet is used to define penalty values to
avoid scheduling a specified track into a specified session as presented
in Fig. 5. Column A includes all tracks, and the number of next columns
is given by the total number of sessions available, where each column
corresponds to a session (from column B to column E in this example).
For instance, Track_5 must be ideally scheduled in Session_3 and/or in
Session_4 so we keep these values empty. Additionally, we do not want
to schedule Track_5 in Session_1 or Session_2, but if that cannot be fully
satisfied then we prefer Session_2. To do so, we just set a small penalty

value for Session_2 and a high penalty value for Session_1.
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Fig. 1. Submissions sheet.
Fig. 2. Tracks sheet.
Fig. 3. Sessions sheet.
We use Tracks-Rooms Penalty sheet to control the scheduling pro-
cess of tracks into rooms as displayed in Fig. 6. Column A contains all
tracks, and the number of next columns is given by the total number
of rooms available, where each column corresponds to a room (from
column B to column E in this example). For instance, if we want Track_1
496
and Track_2 scheduled in Room_4, then we set a penalty value for all
rooms except for Room_4.

The Similar Tracks sheet allows to define which pair of tracks should
not be scheduled in parallel as shown in Fig. 7. Column A includes all
tracks, and the number of next columns is given by the total number
of tracks, where each column corresponds to a track (from column B to
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Fig. 4. Parameters sheet.

Fig. 5. Tracks-Sessions Penalty sheet.

Fig. 6. Tracks-Rooms Penalty sheet.
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Fig. 7. Similar Tracks sheet.
Fig. 8. Sessions-Rooms Penalty sheet.
Fig. 9. Solution example.
column I in this example). Suppose Track_3 is similar to Track_6 and
Track_8 and we do not want to schedule Track_3 and Track_6 or Track_3
and Track_8 in parallel. We define this by simply setting a penalty value
for that pairs of tracks. Notice that the value of the penalty does not
support preferences here among pairs of tracks because we include this
in the model as a hard constraint.

Lastly, we use Sessions-Rooms Penalty sheet to define unavailability
of rooms for certain sessions as presented in Fig. 8. Column A contains
all sessions, and the number of next columns is given by the total
number of available rooms, where each column corresponds to a room
498
(from column B to column E in this example). For instance, if Room_3
is unavailable during Session_4, then we add a penalty value for that
session-room pair.

After the completion of the optimisation, we generate a new spread-
sheet file that contains the optimised schedule and the violations report.
In Fig. 9, we present a solution example by solving the N2OR instance
with the extended model where the upper timetable refers to the tracks
solution and the lower timetable refers to the submissions solution. The
violations report is presented in Fig. 10, where we report the objective
value along with details of the violations.
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Fig. 10. Violations report example.
Table 8
Overall computing time: 𝑡𝑏 indicates the time required to build the model, 𝑡𝑠 indicates
the required time for the solver to terminate, and 𝑡𝑡 indicates the total time required.
All times are in seconds.

Instance Exact Model Extended Model

𝑡𝑏 𝑡𝑠 𝑡𝑡 𝑡𝑏 𝑡𝑠 𝑡𝑡
N2OR 0.1 0.1 0.2 0.1 0.8 0.9
GECCO19 158.9 3,600.0 3,758.9 152.2 57.5 209.7
GECCO20 4.9 8.3 13.2 5.7 51.8 57.5
GECCO21 1.8 19.7 21.5 2.2 20.5 22.7
OR60 143.6 3.6 147.2 151.8 4.8 156.6
OR60F 79.0 13.9 92.9 99.2 3,600.0 3,699.2
OR60F2 272.6 88.9 361.5 344.5 3,600.0 3,944.5
OR60F3 1,072.7 137.4 1,210.1 1,211.8 3,600.0 4,811.8

Appendix B

In Table 8 we present the time required to build the mathematical
models for each instance.
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