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A B S T R A C T   

In the aftermath of natural disasters there is a need to provide disaster relief services. These services are offered 
by diverse disaster relief personnel teams that are specialized in the provision of the required services, e.g., teams 
that set up temporary shelters, teams that are providing medical services. These services are provided during a 
rolling horizon and the demand and supply characteristics of the disaster relief system evolve dynamically over 
time. In this paper we are presenting a dynamic variant of the multi-objective disaster relief personnel routing 
and scheduling (DDRPRS) problem, which considers efficiency, fairness and transportation risk objectives. We 
introduce a Quadrant Shrinking Method (QSM) based heuristic algorithm to approximate the Pareto Optimal 
Solutions of the DDRPRS problem under consideration. The proposed algorithm considers the performance of the 
solutions over the entire planning horizon and their robustness over time in terms of their efficiency, fairness and 
transportation risk. We apply the proposed heuristic for routing and scheduling personnel involved in evacuation 
and medical operations using data from the 2018 Lombok Earthquake in Indonesia. Our heuristic imple
mentation covers both the dynamic and static variants of the disaster relief personnel routing and scheduling 
problem. Computational results show that the proposed heuristic can generate in a short time sufficiently large 
number of Pareto Optimal Solutions which cover the entire Pareto frontier as indicated by the diverging be
haviours of the Pareto Optimal Solutions and the associated hypervolume metrics.   

1. Introduction 

As reported by the United Nations Disaster Risk Reduction Office, the 
number of natural disasters has increased significantly in the last 20 
years (UNODR, 2020), including severe disasters such as the Boxing day 
tsunami in Indonesia (2004), the Port-au-Prince earthquake (2011) and 
the Nepal earthquake (2015). In 2015, the United Nations presented the 
Sendai Framework for Disaster Risk Reduction 20152030 which points 
to the need for focused action in four priority areas: i) understanding the 
disaster risk, ii) strengthening the disaster risk governance, iii) investing 
in disaster risk reduction and iv) enhancing disaster preparedness for 
disaster response. These priorities require to reinforce the disaster 
response resources to promote policies assisting public services 
(UNDRR, 2015). As the emergency management divisions are often 
underfunded, as well as understaffed (Oostlander, Bournival, & O’Sul
livan, 2020), the necessary investments to foster the disaster response 

personnel (DRP) units are hardly made which results in lack of DRP and 
imbalance between the available personnel and demand for disaster 
relief services. These conditions underline the importance to efficiently 
manage the available DRP. 

An implication of the personnel shortages is the excessive working 
hours of the DRP which risk both the safety of the personnel and the 
operations they carry out. This necessitates to consider resting re
quirements of the DRP in their scheduling. Furthermore, the routing and 
scheduling of the DRP should consider the efficiency and fairness of the 
disaster response services while taking into account the risks on the 
transportation network due to the disasters. While the demand for the 
disaster response services should be satisfied as quickly as possible (i.e, 
efficiently), it is also vital to provide a fair provision of these services 
among different disaster-affected zones (i.e., fairness). Considering the 
possible damages on the transportation network in the aftermath of 
disasters, it is also crucial to consider the corresponding transportation 
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risks along with the efficiency and fairness associated with the provision 
of the disaster relief services. 

Due to the nature of disasters, disaster response services are carried 
out in an environment that is highly dynamic. Therefore, the routing and 
scheduling decisions of the DRP should be able to be efficiently adapted 
to the possible changes realized after the onset of disasters. Specifically, 
the magnitude and spatial distribution of demand and/or the condition 
of the transportation network might change over time (e.g., emergence 
of new demand and changes of the characteristics of the underlying 
transportation network such as travel time, connectivity and risk) due to 
post-disaster effects of the disaster. Consequently, the dynamic changes 
over the horizon of the provision of the disaster response services should 
be considered. Although there are models incorporating the resting re
quirements of the DRP and the efficiency, fairness and risk objectives in 
a static environment (Tarhan, Zografos, Sutanto, Kheiri, & Suhartanto, 
2023), there are no models incorporating the dynamic aspects of the 
DRP routing and scheduling (DRPRS) problem. Furthermore, there are 
no efficient heuristics available for solving both the static and dynamic 
variants of the multi-objective disaster relief personnel routing and 
scheduling problem. 

In this paper, we are introducing the Dynamic Multi-Objective 
Disaster Response Personnel Routing and Scheduling (DDRPRS) model 
by extending the multi-objective model proposed for the static DRPRS 
problem in Tarhan et al. (2023). Furthermore, we are introducing a 
heuristic algorithm to solve larger instances of both variants, i.e., static 
and dynamic, of the DRPRS problem. The proposed heuristic approxi
mates the entire Pareto-optimal frontier and in the case of the DDRPRS 
problem incorporates the dynamic changes of the problem parameters, 
namely magnitude and location of the demand and condition of the 
transportation network. 

The proposed solution methodology is tested by using historical data 
for the 2018 Lombok Earthquake. The proposed approach is first applied 
to a small-size test instance which considers part of the affected area by 
the relevant earthquake. Subsequently, we are using the proposed 
heuristic approach to solve a larger-size instance considering a wider 
area (and a larger number of personnel). Finally, different scenarios, 
reflecting the dynamic characteristics of the problem stemming from 
possible transportation network failures and the evolution of demand for 
the provision of services over time, are generated and solved to 
demonstrate the applicability of the proposed solution methodology. 
While our case study and the associated computational experiments 
relate to the routing and scheduling of personnel offering evacuation 
and medical services at the onset of 2018 Lombok Earthquake, the 
proposed methodology is applicable for different types of disasters (and 
types of response personnel) in which personnel are deployed at the 
onset of the disaster and are routed between disaster-affected zones over 
a sufficiently long period that requires them to take resting/sleeping 
breaks (such as earthquakes and floods). 

In a nutshell, the contributions of this paper are as follows:  

- The dynamic extension of the Multi-Objective Dynamic Disaster 
Response Personnel Routing and Scheduling Problem (DDRPRS) is 
introduced. The proposed model incorporates the resting re
quirements and synchronization of personnel and considers effi
ciency, fairness and risk objectives. We also introduce a new fairness 
metric that takes into account the dynamic nature of demand. A 
mixed-integer linear programming (MILP) model is proposed for the 
DDRPRS problem. 

- A Quadrant Shrinking Method (QSM) based heuristic (QSH) algo
rithm is developed that can be used to solve any tri-objective integer 
programming model.  

- The static (DRPRS) and dynamic (DDRPRS) variants of the proposed 
model are solved by the QSH. A construction heuristic and a tabu 
search algorithm are developed to be employed within the QSH. A 
new set-partitioning model, including a dynamic programming 

approach in its pre-processing, is introduced to optimize the path 
selection decisions on a multi-graph transportation network.  

- The proposed solution methodology is applied on a test instance 
using historical data for 2018 Lombok Earthquake, to gain further 
insights regarding the optimization of the static and dynamic DRPRS. 

The remainder of the paper is organized as follows. The literature 
pertaining to the DDRPRS problem is reviewed in Section 2. The prob
lem is formally defined in Section 3. The proposed MILP model is pre
sented in Section 4. The proposed solution methodology is explained in 
Section 5. Results of the computational experiments considering both 
static and dynamic problem environments are shared in Section 6. 
Finally, outputs of this study and promising future research directions 
are summarized in Section 7. 

2. Literature review 

The focus of this paper is to twofold: i) to incorporate the dynamic 
aspects of the DRPRS problem and ii) to develop a heuristic algorithm 
that will be able to address both the dynamic and static variants of the 
DRPRS problem. For completeness, we first review solution approaches 
proposed in studies addressing the static version of the DRPRS problem 
and then discuss studies regarding the dynamic version of the DRPRS 
problem. Subsequently, we briefly review the multi-objective ap
proaches applied to the DDRPRS or similar problems in the literature. 
We conclude this section by stating our contributions. We note that 
personnel routing and scheduling problems for disaster response oper
ations have often been studied in the context of personnel involved in 
operations offering specific services such as disaster assessment, 
network restoration, search-and-rescue, evacuation and medical opera
tions (Amideo, Scaparra, & Kotiadis, 2019; Balcik & Yanıkoğlu, 2020; 
Chen & Miller-Hooks, 2012; Duque, Dolinskaya, & Sörensen, 2016; 
Karabuk & Manzour, 2019; Liu, Li, Liu, & Patel, 2016; Talarico, Meisel, 
& Sörensen, 2015). Each of these studies addresses specific properties of 
the corresponding services such as the transportation reliability, sur
vival likelihood and triage of the disaster victims. Herein, we focus our 
review on more generic (not disaster specific) studies that are more 
closely related to the research reported in this paper. 

2.1. Literature related to the DRPRS problem 

Rolland, Patterson, Ward, & Dodin (2010) developed an adaptive 
reasoning technique heuristic to solve the routing and scheduling 
problem including multiple types of emergency services and multiple 
types of personnel each with a distinct skill set. It is shown that the 
proposed heuristic can find the best solution known for many instances 
generated by Dodin, Elimam, & Rolland (1998). Bodaghi & Pala
neeswaran (2016) proposed a MILP model for the routing and sched
uling of the personnel to serve different types of services with distinct 
release times. Nadi & Edrisi (2017) developed a Markov decision process 
considering a multi-agent assessment and response system which co
ordinates relief assessment and emergency response teams. Wang, Liu, 
Lian, Hong, & Chen (2018) developed a two-stage heuristic for dis
patching both medical supplies and medical personnel. In the first stage, 
they apply an artificial bee colony algorithm to solve the reduced 
problem without medical supply distribution constraints. In the second 
stage, a rolling horizon heuristic is applied to generate a feasible solu
tion in terms of medical supply distribution. Bodaghi, Palaneeswaran, & 
Abbasi (2018) developed an MILP model to be used within a two-phase 
method (Ulungu & Teghem, 1995) to solve the bi-objective (i.e., mini
mization of the makespan and weighted sum of the completion times) 
routing and scheduling of relief supply and personnel. The proposed 
method was tested on a hypothetical dataset and on a data set case study 
for the Melbourne metropolitan area. Tarhan et al. (2023) proposed a 
lexicographic optimization approach applied over a rolling horizon to 
optimize the efficiency, fairness and transportation risk of the DRP 
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routing and scheduling. The proposed approach was tested by using 
historical data for 2018 Lombok Earthquake. 

To the best of our knowledge, Tarhan et al. (2023) is the only study 
addressing the fairness and transportation risk objectives in the context 
of the DRPRS problem. On the other hand, there exist studies consid
ering the corresponding objectives in similar contexts such as disaster 
relief supply distribution. For example, Ortuño, Tirado, & Vitoriano 
(2011) and Vitoriano, Ortuño, Tirado, & Montero (2011) consider the 
fair distribution of relief supplies along with total transportation risk 
exposure associated with their distribution of supplies. In these two 
studies, a single path between two given locations is considered. Nolz, 
Semet, & Doerner (2011) and Wan, Ye, & Peng (2023) take into account 
different paths between two nodes having different travel time and 
transportation risk trade-off. They propose different models such that in 
the pre-processing of each model, one of these alternative paths is 
selected based on a distinct criterion (such as the minimal travel time 
and the maximum reachability probability). Tikani & Setak (2019), on 
the other hand, minimize the total service completion times of distrib
uting relief supplies to disaster-affected zones while using a multi-graph 
transportation network. They impose a risk-oriented constraint that is 
bounding the maximum total risk of the paths traversed by vehicles. 

2.2. Literature related to the DDRPRS problem 

Fiedrich, Gehbauer, & Rickers (2000) dynamically optimize the 
allocation of both rescue personnel and rescue equipment to minimize 
the expected number of fatalities. Simulated annealing and tabu search 
algorithms were developed and applied for a set of damage-and-loss 
scenarios. Yi & Özdamar (2007) proposed a two-stage approach that 
first determines the aggregate vehicle flows and then constructs feasible 
routes along with the allocation of the resources to the vehicles in a 
multi-period setting (in order to include dynamic changes over time). 
The proposed approach, that minimizes the weighted sum of the un
satisfied demand, was tested on a possible Istanbul earthquake expected 
to take place in the next decades. Al Theeb & Murray (2017) consider 
transfer of commodities and workers from distribution centers to 
affected zones to carry out emergency services such as evacuation, 
medical and repair of damaged infrastructure. They proposed a 
multi-period routing and scheduling problem to minimize the total un
satisfied demand and a set of heuristic algorithms that can solve prob
lems of practical size in reasonable time. Xu, Gai, & Salhi (2021) and 
Fitrianie & Rothkrantz (2015) proposed modified Dijkstra algorithms to 
evacuate victims from affected zones to safe locations. While the former 
study considers evacuation following a chemical accident and the 
resulting risks, e.g., heat radiation changing over time, the latter study 
considers the possibility of arcs’ becoming inaccessible over time. Mills, 
Argon, & Ziya (2018) developed Markov-decision based heuristic algo
rithms to dynamically dispatch ambulances to patient locations and 
decide where to carry them for treatment. The proposed heuristics were 
tested on a case study for a hypothetical earthquake. Kim, Shin, Lee, & 
Moon (2018) consider rescue operations in a multi-period setting in 
order to incorporate the varying risk (e.g., due to fire spread or gas leak), 
arc capacity and processing times over the planning horizon. They 
proposed a greedy algorithm to maximize the weighted satisfied de
mand. Although there are studies addressing the transportation risk in 
different dynamic disaster-related contexts (e.g., Zhou, Liu, Zhang, & 
Gan, 2017), they do not consider multiple paths between two nodes and 
do not incorporate a fairness objective. For more detailed literature re
view, readers can refer to the recent systematic review of operations 
research and management science in humanitarian operations by Far
ahani, Lotfi, Baghaian, Ruiz, & Rezapour (2020) and Baxter, Lagerman, 
& Keskinocak (2019). 

2.3. Multi-objective considerations related to the DRPRS and DDRPRS 
problems 

There are various exact approaches that have been proposed for 
solving multi-objective integer programming problems (Ehrgott, 2006; 
Romero, Tamiz, & Jones, 1998). Vitoriano et al. (2011) and Ortuño et al. 
(2011) apply goal programming and lexicographic goal programming 
optimization, respectively, which are defined for any number of objec
tives. These algorithms require to solve a set of single-objective prob
lems which are handled by MILP solvers in the corresponding studies. 
Another exact multi-objective algorithm used in our problem context 
(Bodaghi et al., 2018) is the two-phase approach by Ulungu & Teghem 
(1995) that is specifically designed for bi-objective problems, where 
again each single-objective subproblem is solved by a MILP model. 

Performance of the exact approaches can deteriorate as the number 
of integer variables increases. This motivates the development of heu
ristic algorithms addressing the multi-objective problems. Particularly, 
there have been many metaheuristic algorithms specifically designed for 
the multi-objective problems (Jones, Mirrazavi, & Tamiz, 2002). Most of 
these metaheuristics involve a dominance-based (mostly Pareto domi
nance) selection mechanism to be able to approximate the Pareto 
frontier (Liu, Li, Liu, & Guo, 2020). Among those studies, 
population-based algorithms such as genetic algorithm and particle 
swarm optimization are shown to produce satisfactory results for diverse 
class of problems. Accordingly, in our problem context, Wan et al. 
(2023) developed a population-based multi-objective hybrid salp swarm 
and sine cosine algorithm and Zhou et al. (2017) proposed a 
multi-objective evolutionary algorithm. 

While there are generic population-based algorithms such as genetic 
(e.g., Deb, Pratap, Agarwal, & Meyarivan, 2002) and particle swarm 
optimization (e.g., Alaya, Solnon, & Ghedira, 2007) algorithms, they 
need to be fine-tuned with respect to the problem specifics for an 
improved performance. Ehrgott & Gandibleux (2000) specify this pitfall 
as underlining that each problem has its own specifics and a general 
multi-objective metaheuristic cannot cope with all of these. In a recent 
study, Liu et al. (2020) share the following two findings after their re
view on multi-objective discrete optimization algorithms: i) most of the 
existing studies propose algorithms to solve specific optimization 
problems and ii) it is promising to introduce the optimum-seeking 
capability of analytical/exact techniques into multi-objective meta
heuristics. In this line, we reviewed the exact approaches that are 
applicable for our problem. As shown in Section 5, the DDRPRS problem 
we are studying reduces to a tri-objective problem. To the best of our 
knowledge, the Quadrant Shrinking Method (Boland, Charkhgard, & 
Savelsbergh, 2017) is the state-of-the-art algorithm for tri-objective 
integer problems. The Quadrant Shrinking Method (QSM) requires to 
solve a set of single-objective problems. Tabu search (Fiedrich et al., 
2000) or adaptive reasoning technique (Rolland et al., 2010) which is 
inspired by the tabu search algorithm of Dodin et al. (1998) are used 
effectively in our problem context. Tabu search algorithm is also shown 
to be competitive for both routing and scheduling problems (Mathlou
thi, Gendreau, & Potvin, 2021). Although an improved version of the 
QSM method exists for binary problems that avoids generating duplicate 
solutions (Boland, Charkhgard, & Savelsbergh, 2019), our DDRPRS 
problem is not necessarily binary and can be integer depending on the 
disaster response service to be considered (as explained in Section 4). 
Thus, our heuristic is developed based on the QSM for integer problems. 

2.4. Contributions of this study 

Tarhan et al. (2023) optimize the fairness and transportation risk 
objectives in the DRPRS context. They consider a static environment and 
propose a solution approach in which different paths between two given 
locations are not considered simultaneously. On the other hand, the 
majority of the DDRPRS studies reviewed in Section 2.2 consider a single 
objective and seek to optimize the efficiency of the disaster response 
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services, e.g., minimization of expected fatalities and unsatisfied de
mand, and to the best of our knowledge, the fairness and transportation 
risk objectives are not addressed in the DDRPRS context. Another gap in 
the literature is the absence of heuristic algorithms taking into account 
the properties of the DRPRS problem (such as personnel resting re
quirements, personnel synchronization due to service take-overs, and 
different types of demand explained in Section 3). While the dynamic 
DRP routing and scheduling (DDRPRS) problems mostly address evac
uation and/or rescue operations, they do not take into account the 
personnel resting requirements, inherently assuming that the relevant 
operations can be completed in a short horizon. In consideration of the 
dynamic changes such as aftershock effects and secondary disasters, 
personnel rests can be inevitable due to the extended horizon of 
operations. 

In this paper, we address the identified gaps and propose a dynamic 
multi-objective mathematical model that optimizes simultaneously and 
dynamically the fairness and transportation risk of the disaster response 
operations along with their efficiency subject to the constraints such as 
personnel rests. A multi-graph transportation network is used to better 
represent the trade-off between travel time and risk of the paths to 
traverse. We also propose a new fairness measure considering the tem
poral evolution of demand, which is differentiating it from the static 
fairness measures. 

In terms of the solution approach, we develop a heuristic algorithm 
exploiting the capability of exact approaches as suggested in Liu et al. 
(2020). Specifically, we propose a heuristic adaptation of the 
state-of-the art algorithm QSM for tri-objective integer problems. The 
heuristic adaptation is defined at a higher level and it is applicable to 
any tri-objective integer problem. It requires a solution algorithm to 
tackle the successive single-objective subproblems resulting from the 
QSM. To this end, we also develop a tabu search algorithm for the 
single-objective version of the DDRPRS problem that can handle the 
specific attributes of the DRPRS (and DDRPRS) problem. The proposed 
heuristic applies the rolling horizon approach so that it can update the 
changing problem parameters such as the transportation risks of paths 
and/or demand locations and magnitudes on a daily basis. While the 
single-objective version of the DDRPRS problem is NP-Hard and difficult 
to be solved per se, the proposed heuristic can generate efficient solu
tions that approximate the Pareto frontier of the DDRPRS problem in a 
short time. 

3. Problem definition 

The DDRPRS problem differs from its static counterpart DRPRS in 
three aspects. First of all, the DDRPRS problem incorporates dynamic 
changes of the problem parameters over the disaster response period. 
Secondly, it considers unequal priorities of demand at different locations 
unlike its static version. Demand priorities can change over time as well. 
Lastly, the fairness measures takes into account the changes on demand 
over time (i.e., emergence of new demand locations and/or changing 
demand magnitudes at existing demand locations). 

For completeness and in order to highlight the elements differenti
ating the static and dynamic variants of the problem, we are presenting 
in this section a brief description of the static DRPRS problem, as well as 
the additional features of the dynamic (DDRPRS) problem. 

The DRPRS problem is motivated by the disaster response services 
provided in the aftermath of large-scale disasters in Indonesia. In this 
context, Disaster Response Personnel (DRP) teams specialized in the 
provision of different types of services are dispatched to disaster 
impacted areas, to satisfy the demand for their services. An example, 
that has motivated the research reported in this paper, refers to the 
dispatching of DRP teams that are dedicated to provide either evacua
tion or medical services. More details regarding this example can be 
found in Section 6. 

In this context, personnel teams are deployed in the aftermath of a 
disaster and travel between affected zones to provide the services 

corresponding to their specialization. Evacuation personnel set-up tents, 
i.e., temporary housing, to accommodate the evacuees while medical 
personnel provide medical assistance. A personnel team might involve a 
single person or a group of people working as a team which are qualified 
to execute their dedicated service (e.g., a medical team comprising from 
doctors and nurses). 

We are making some assumptions relevant to the context of the 
DRPRS problem that has motivated our work. Each demand point re
quires a set of services each of which should be provided during daylight 
unless there exists lighting equipment at the service site. This assump
tion results in service time-windows defined by their earliest start and 
latest completion time during the day. Due to the lack of personnel, it 
might not be possible to dedicate personnel to each demand location and 
thus personnel are routed through the demand points to serve the de
mand. They need to take sleeping breaks after reaching the maximum 
allowable number of continuously working hours. Sleeping facilities are 
assumed to be provided to DRP at designated locations such as a shelter 
or a hotel. When personnel need to stop an ongoing service to have a 
rest, another personnel can continue the provision of the services. In this 
case, the relevant personnel should be synchronized such that the 
personnel taking-over the service should arrive to the demand point 
before the previous personnel leaving it in order to be briefed on the 
status of the service. 

In the DRPRS problem, starting from the onset of the disaster, deci
sion makers make DRP routing and scheduling decisions on a daily basis 
so as to provide the emergency services required by the disaster-affected 
areas. In case of precedence relations between different types of services, 
decision makers consider the routing and scheduling of the personnel 
involved in the corresponding services in tandem. Disaster response 
personnel routing and scheduling decisions are made on a daily basis 
until all demand for emergency services is satisfied. 

Unlike the DRPRS problem for which the problem parameters are 
known at the beginning of the planning horizon and remain the same 
throughout the planning horizon, the parameters of the DDRPRS prob
lem can change over the planning horizon due to various reasons such as 
secondary disasters, after-shock impacts, transportation network fail
ures etc. When the problem parameters change, the DDRPRS problem is 
solved with the updated values of the parameters. Given that the de
mand for the provision of services changes over time with respect to 
both location and magnitude, the DDRPRS problem should take into 
account the time that the demand for services is manifested in order to 
differentiate between demand that has been awaiting for long time to be 
satisfied and demand that has been recently arrived. 

The DDRPRS problem has four objectives which are the minimiza
tion of i) the total unsatisfied demand, ii) the total completion time of 
the demand satisfied, iii) unfair distribution of the unsatisfied demand 
among different demand locations and iv) the total transportation risk. 
The DDRPRS problem is solved over a rolling horizon and the multi- 
objective routing and scheduling problem is solved on a daily basis 
sequentially throughout the planning horizon. Objective functions of the 
mixed-integer linear programming (MILP) model proposed to solve the 
multi-objective routing and scheduling problem are presented in Sec
tion 4. The rolling horizon approach (RHA) and the heuristic algorithm 
proposed to solve its sub-problems (for each day) are presented in Sec
tion 5. We note that the proposed MILP model and heuristic algorithm 
address the assumptions specific to our problem context by introducing 
the respective constraints. However, the proposed modelling and solu
tion framework can be applied to different contexts as well in which 
some of these assumptions are not present, by dropping the corre
sponding constraints. 

4. Mathematical model 

The proposed MILP model is considering the provision of the disaster 
response services on a given day t*. The adaptation of the single-period 
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MILP model to a multi-period setting to cover the entire disaster 
response horizon is explained in Section 5. Let T be the set of days/pe
riods until and including day t*, i.e., T = {1,…, t*}. Set VI includes the 
set of demand points each having an unsatisfied demand at the begin
ning of period t*. Demands of different locations in VI do not necessarily 
emerge in the same period of the time horizon T. Therefore, d̂i,t denotes 
the amount of demand that is emerged at demand point i ∈ VI in period t 
yet not satisfied by period t*, t ∈ T : t ≤ t*. λi, i ∈ VI, is the priority of the 
demand required by demand point i: the higher the priority of a demand, 
the more urgently it needs to be satisfied. We also define set V which 
includes the points of interest in our problem that are i) demand points 
(VI), ii) resting points and iii) base/starting locations of the personnel 
where P is the set of personnel. Considering the transportation network 
spanning the locations in set V, Ai,j includes the set of paths/arcs be
tween locations i and j each representing a distinct trade-off between 
travel time and transportation risk. ri,j,k denotes the transportation risk 
of the kth arc between i and j where k ∈ Ai,j. Alongside these parameters, 
we have three types of variables: ui, ḡi and yp,i,j,k. ui is the unsatisfied 
demand of demand point i at the end of period t* whereas ḡi is the 
completion time of the services at demand point i. On the other hand, 
yp,i,j,k is a binary variable which takes value of one if personnel p travels 
between i and j by using the kth arc between these locations and zero 
otherwise. We note that depending on the type of the disaster response 
service, ui,i ∈ VI, can be continuous or integer and accordingly, the MILP 
becomes either binary or integer. In this model, we have the following 
four objectives: 

Minimize f1 =
∑

i∈VI

uiλi (1)  

Minimize f2 =
∑

i∈VI

ḡiλi (2)  

Minimize f3=

∑

i,j∈VI :argmin{t|d̂i,t>0}≤argmin{t|d̂j,t>0}

max

⎧
⎪⎨

⎪⎩

ui
∑

t∈T
d̂ i,t

−
uj

∑

t∈T
d̂ j,t

,0

⎫
⎪⎬

⎪⎭

⌈|VI |/2⌉⌊|VI |/2⌋
(3)  

Minimize f4 =
∑

p∈P,i,j∈V,k∈Ai,j

yp,i,j,kri,j,k (4) 

The objective functions of the DDRPRS problem (Eqs. (1)–(4)) 
minimize the weighted total unsatisfied demand, the weighted 
completion times of the satisfied demand, unfair distribution of the 
services among demand points and the total transportation risk, 
respectively. Given that the urgency to satisfy the demand at different 
locations varies, priorities for satisfying the demand according to its 
urgency need to be assigned (Hick, Hanfling, & Cantrill, 2012; Tofighi, 
Torabi, & Mansouri, 2016; Yi & Özdamar, 2007). Accordingly, the first 
two objectives (Eqs. (1) and (2)) consider the priority associated with 
the satisfaction of the different types of demand and seek to minimize 
the unsatisfied demand and the service completion times for the urgent 
demands accordingly. Priorities for the satisfaction of demand can 
change over time as new demands may emerge over the planning ho
rizon or the severity of existing demands may increase as awaiting to be 
satisfied. 

The fairness objective (Eq. (3)) seeks to minimize the deviation of 
unsatisfied demand among demand points. Tarhan et al. (2023) show 
that this fairness measure takes value in [0,1] in the static version: The 
fairness would be equal to 0 if all demand points have equal services in 
proportion to their demands, which is deemed as the fairest case, and it 
would be equal to 1 if the demand of the half of the demand points is 
fully served yet the other half is not served at all. This disparate case is 
deemed as the most unfair scenario by this fairness measure. As all 

demand emerges on the first day (i.e., day 1) in the static case, ̄di,1 will be 
greater than 0 and ̄di,t will be 0 for each i in VI and t in T\{1}. Therefore, 
in this case, the numerator in Eq. (3) will be equal to the sum of the 
absolute differences of the unsatisfied demand percentages between the 
demand points. On the other hand, in the dynamic version, Eq. (3) 
prioritizes the satisfaction of the demand that emerged earlier in line 
with first-come first-serve discipline which is deemed to be an egali
tarian service policy (Persad, Wertheimer, & Emanuel, 2009). There
fore, in the dynamic version, the unsatisfied demand percentage 
difference between two demand points i and j will be considered in the 
numerator only if one of these demand points has a smaller demand 
satisfaction percentage although its demand did not emerge later than 
the other demand point. As we are imposing additional conditions in the 
dynamic case to sum the terms in the numerator of the fairness objective, 
it will still take a value in [0,1]. The fairness in the dynamic case be
comes zero when demand points do not have higher unsatisfied demand 
percentages than other demand points of which demand emerged in the 
same period or later. This represents the most fair scenario according to 
the proposed fairness measure. 

The risk objective (Eq. (4)) is to minimize the total transportation 
risk of the roads/arcs travelled by the DRP. To this end, a risk index is 
assigned to each arc of the transportation risk. The risk index can be 
defined in different terms depending on the decision makers such as the 
vulnerability and accessibility of the corresponding arcs (Cantillo, 
Macea, & Jaller, 2019). Once the risk definition is made, risk indices can 
be determined by using historical data and topographical GIS maps 
(Hamedi, Haghani, & Yang, 2012) or if possible, by using the real-time 
information after the disaster. The entire MILP model with its constraint 
sets is presented in the supplementary material to this paper. 

The proposed MILP model can incorporate the dynamic changes of 
the problem parameters unlike its static version proposed by Tarhan 
et al. (2023). In their solution approach, Tarhan et al. (2023) convert a 
given road-network into a set of complete graphs by solving a 
bi-objective shortest path problem minimizing the total travel times and 
transportation risks. This is achieved by using the weighted sum method 
for a set of weights and for each pair of points of interest (i.e., depots, 
resting points and demand points) on the network. Subsequently, they 
apply a lexicographic optimization, independently to each complete 
graph, considering the tri-objective problem excluding the total trans
portation risk objective. Underlying assumption is that each complete 
graph represents a different transportation risk level and the trans
portation risk objective does not need to be included explicitly. 

In the model presented in this paper, we implement the same con
version of the road-network into a set of complete graphs. However, 
instead of handling each complete graph independently, we are 
considering all complete graphs simultaneously by uniting all complete 
graphs into a single multi-graph. In this multi-graph, there is not 
necessarily a single path/arc between points of interest (the terms path 
and arc are used interchangeably hereafter as each arc in multi-graph 
corresponds to a path between its nodes). The proposed model defines 
the transportation risk objective explicitly and by using multi-graph, it 
takes into account the impacts of choosing paths to travel between nodes 
not only in terms of the transportation risk but the efficiency and fairness 
of the services as well. Consequently, it enables to cover a wider spec
trum of solutions. In short, the proposed MILP model extends the static 
MILP model for the DRPRS problem by introducing i) the transportation 
risk objective, ii) the path selection decisions between the nodes visited 
by personnel and iii) dynamic changes of the problem parameters. 

5. Solution methodology 

The MILP model presented in Section 4 is defined for a single-period 
DDRPRS problem. On the other hand, DRP routing and scheduling de
cisions are made on a daily basis until all demand for emergency services 
is satisfied as explained in Section 3. Therefore, in our solution 
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methodology, we use a rolling horizon approach that solves a single- 
period DDRPRS problem for each period/day of the disaster response 
horizon sequentially until all disaster response services are completed. A 
brief flow chart of the proposed rolling horizon approach (RHA) is 
provided in Fig. 1. 

As shown in Fig. 1, the RHA involves the solution of the single-period 
DDRPR problem for periods/days t = {1,…,T} sequentially where t = 1 
is the beginning of the disaster response period (i.e., no disaster response 
service demand has been served yet) and t = T defines the end of the 
period that the entire demand for disaster response services is satisfied. 
The single-period DDRPR problem for period t is solved using the 3O1P 
(t) model which is presented in Section 5.1. Hereafter, 3O1P, instead of 
3O1P(t), is used when we do not address a particular period yet explain 
how the 3O1P model works for any given period. 

At the end of period t, the RHA generates a set of solutions for the 
routing and scheduling of the DRP in period t. Subsequently, for each of 
these solutions, the RHA applies the 3O1P(t + 1) model, after updating 
the problem parameters (i.e., status of demand, personnel and trans
portation network), which generates a new set of solutions for period t +
1. This process continues until we reach period T such that there is no 
unmet demand at the end of any solution generated by the 3O1P(T) 
model. Since we apply the 3O1P model in a given day for all solutions of 
the previous day, the number of solutions is non-decreasing over the 
periods. We note that period T is not pre-specified and depends on the 
problem parameters. 

5.1. The 3O1P model 

The 3O1P model is used to solve the single-period DDRPRS prob
lems. It reduces the originally quad-objective problem (see Section 4) 
into a tri-objective problem. Subsequently, we solve the resulting tri- 
objective problem heuristically as explained in the following. 

Considering the fact that unsatisfied demand minimization has a 
higher priority than the other objectives discussed in Section 4, the 3O1P 
(t) model first finds the minimum possible total unsatisfied demand at 

the end of period t. Then, it converts this minimum value to a constraint 
such that the total unsatisfied demand should not exceed the corre
sponding minimum value plus a tolerance term representing how much 
decision makers are willing to deviate from the minimum total unsat
isfied demand for the sake of other objectives. The resulting tri-objective 
problem is solved at the end of the 3O1P(t) model. 

The MILP model presented in Section 4 is NP-Hard. Moreover, Tar
han et al. (2023) show that solving the static MILP model for even 
small-size instances is computationally difficult. Therefore, we propose 
a heuristic quadrant shrinking algorithm, QSH, to solve the tri-objective 
problems in the 3O1P models. QSH is a heuristic adaptation of the exact 
quadrant shrinking method (QSM) proposed by Boland et al. (2017), the 
state-of-the-art algorithm for the tri-objective integer problems. The 
proposed heuristic that is applying the QSH over a rolling horizon is 
denoted as QSH RHA. 

The solution approach of the 3O1P model is provided in Algorithm 1. 
The proposed algorithm first generates a solution by using a constructive 
heuristic (CH). This solution is set as the initial solution of a tabu search 
(TS) that seeks to minimize the total unmet demand at the end of the 
given day. Then, given the minimum possible total unmet demand, the 
Quadrant Shrinking Heuristic (QSH) is applied to generate a set of 
efficient solutions for the resulting tri-objective single-period DDRPRS 
problem. 

In Section 5.2, we provide an overview of the exact QSM and discuss 
the characteristics of our heuristic adaptation QSH while in Sections 5.3 
and 5.4, we present respectively the CH and TS algorithms used in Al
gorithm 1. 

5.2. Exact and heuristic quadrant shrinking methods (QSM and QSH) 

5.2.1. The exact version of QSM 
The QSM introduced by Boland et al. (2017) works in a projected 

2-dimensional criterion space: It optimizes one of the objective functions 
chosen arbitrarily and converts the other two objective functions to 
constraints. Then, in each iteration of the QSM, two integer models are 

Fig. 1. The rolling horizon approach.  
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solved sequentially for a given u = (u1, u2) value (that is denoted as 
2D-NDP-Search(u)) where u1 and u2 are set as the upper limits/bounds 
of the first and second objective functions converted to constraints, 
respectively. The first integer model of 2D-NDP-Search(u) optimizes the 
objective function (that is retained as an objective and not converted to a 
constraint) subject to the constraints such that the values of the 
remaining two objective functions that are converted to constraints do 
not exceed u1 and u2, respectively. Given the optimal solution to the first 
integer solution x, the second integer model of 2D-NDP-Search(u) min
imizes the sum of the all three objective function values subject to the 
constraints such that none of the three objective function values is worse 
than that of solution x. The QSM systematically updates u and solves 
2D-NDP-Search(u) for different u values iteratively so that it guarantees 
to find all Pareto-optimal solutions. 

5.2.2. The QSH 
The QSM guarantees to find all Pareto-optimal solutions only if both 

integer models in 2D-NDP-Search(u) are solved to optimality for 
different values of u that are determined over the course of the QSM. In 
the case of the DDRPRS problem, 2D-NDP-Search(u), i.e, the sub- 
problem of the QSM, requires to solve two integer models related to 
the single-objective single-period DDRPRS problem. Due to the NP-Hard 
nature of the relevant problems, it is not possible to use exact methods 
for solving the two integer models of 2D-NDP-Search(u) repetitively for 
different u values within the QSM in reasonable computational time in 
real world settings. Therefore, we have developed a tabu search (TS) 
algorithm to solve the corresponding integer models of 2D-NDP-Search. 
The TS algorithm enables the simultaneous handling of the two models 
and generates the approximate set of efficient solutions in much shorter 
time. Since we are solving the QSM sub-problems heuristically, we may 
not find the optimal solution for particular sub-problems which require 
the adaptation of the QSM accordingly. In the following, we explain our 
heuristic implementation of the QSM for the tri-objective DDRPRS 
problem which can be adapted to any tri-objective integer problem. 

Without loss of generality, in our implementation of QSH, we 
consider the minimization of the total service completion time as the 
objective function and convert the other two objective functions (i.e., 
minimization of unfairness and total transportation risk) to constraints. 
In Algorithm 2, we provide detailed descriptions of both the QSM and 
the QSH in a single framework to show their differences clearly. The 
black font lines in this algorithm are applied to both the original exact 
QSM and its heuristic implementation QSH. On the other hand, the blue 
and red font lines are applied only to the QSM and QSH, respectively. 
For details of the original algorithm, the reader is referred to Boland 
et al. (2017). 

In Algorithm 2, z1(xn) and z2(xn) are the values of the first and sec
ond objective functions, that are converted to constraints, of solution xn, 
respectively. In our implementation, they correspond to f3(xn) and 
f4(xn), respectively. D is the list storing u values each for which a sub- 
problem of the QSM needs to be solved. D is sorted such that uf

1 > … >

ub
1 and uf

2 < … < ub
2 where uf and ub are the front and back elements of 

list D, respectively. The QSM systematically solves the sub-problems for 
the elements of list D. Whenever a new solution xn, which is guaranteed 

to be efficient, is generated during this process, new sub-problems (i.e., 
new u values) are added to list D so that new sub-problems are aiming to 
improve one of the objective function values f3(xn) or f4(xn) of solution 
xn. 

Differences between the QSM and QSH: 
The heuristic implementation of the QSM (QSH) differs from the 

QSM in three aspects. First, the QSH uses the tabu search (TS) algorithm 
to solve the sub-problems, instead of solving two sequential integer 
optimization models (2D-NDP-Search) of the QSM (see lines 9–10 and 
29–30 where Tabu(x,2, u) refers to the TS algorithm initiating from 
solution x and optimizing f2 subject to f3 ≤ u1 and f4 ≤ u2). Second, the 
QSM seeks a slight improvement in one of the objective functions in 
producing new sub-problems after generating solution xn by extracting 
small ϵ value from either f3(xn) or f4(xn). On the other hand, the QSH 
produces new sub-problems after generating solution xn by extracting 
f3(xn)ϵ from f3(xn) or extracting f4(xn)ϵ from f4(xn) in order not to obtain 
very similar solutions to xn in terms of f3 and f4 (see lines 15–20 and 
35–40). The third differentiating aspect of the QSH is regarding its 
possibility of not being able to find optimal solutions of the sub- 
problems. Due to the heuristic implementation, it is possible that the 
QSH may not find the optimal solution of a sub-problem and this sub- 
optimality can be realized when a better solution than the best solu
tion previously found is discovered for the relevant sub-problem in 
succeeding sub-problems. In such a case, the sub-problems to be solved 
in the succeeding iterations of the QSH should be adapted so as to take 
into account the new best solution (of the relevant sub-problem solved in 
preceding iterations). Therefore, whenever a new best solution xnew is 
found for a preceding sub-problem u = (u1, u2) during the QSH, two new 
candidate sub-problems denoted by unew

front = (f3(xnew)(1 − ϵ), u2) and 
unew

back = (u1, f4(xnew)(1 − ϵ)) are created. Then, these two candidate sub- 
problems are compared with the existing sub-problems to be solved as 
follows. 

Let unew = (unew
1 , unew

2 ) be one of the sub-problems created for the new 
best solution xnew. unew is not added to list D if one of the following two 
conditions holds: 

i) If there is another sub-problem uh in list Dhistory, that stores the 
previously solved sub-problems, such that uh

1 ≤ unew
1 and uh

2 ≤ unew
2 

ii) If there is another sub-problem uf in list D such that uf
1 ≥ unew

1 and 
uf

2 ≥ unew
2 

The first condition means that we have already solved a sub-problem 
uh whose feasible region is a subset of the feasible region of unew. Thus, 
solving unew would entail considering feasible regions of the sub- 
problems previously solved which can lead to repetitively solving sub- 
problems for similar feasible regions. On the other hand, the second 
condition means that we do not need to solve sub-problem unew since we 
have another sub-problem uf in list D that covers sub-problem unew. If 
none of the two conditions holds, unew is added to list D. Then, it should 
be checked if there is any sub-problem uf in list D that is covered by unew 

such that uf
1 ≤ unew

1 and uf
2 ≤ unew

2 . If so, such sub-problems should be 
removed from list D. 

Algorithm 1 
Outline of the solution of the 3O1P model.  
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Algorithm 2 
Quadrant Shrinking Method (QSM) and Its Heuristic Adaptation (QSH).  
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5.3. Construction heuristic (CH) 

Considering the efficiency objectives, i.e., Eqs. (1)-(2), it is crucial to 
be able to satisfy as much demand as soon as possible. Therefore, we 
propose a construction heuristic (CH) algorithm that starts with empty 
routes and produces new solutions by inserting demand points with 
unsatisfied demand into each possible position on each existing route, 
chooses the best solution in terms of the satisfied demand per unit time, 
and repeats this process until the chosen solution does not improve the 
total unsatisfied amount of the previous best solution. Thus, in each 
iteration, a new location is added/inserted to one of the routes until 
none of the possible insertions of the locations to the existing routes can 
improve the average amount of satisfied demand per unit time. 

Due to the multi-graph transportation network considered in the 
DDRPRS problem, the routing decisions include not only the sequence of 
nodes/locations to be visited but also the roads/paths to travel between 
the relevant nodes. Therefore, in this paper, solutions are presented as 
the set of routes (i.e., sequence of demand points visited by each 
personnel), the set of arcs/paths selected to be travelled among the 
nodes visited and the working start time of personnel. It should be noted 
that solution encodings do not include resting times of the personnel. 
However, for a given personnel, by starting from its working start time 
and following the sequence of demand points it visits and travelling over 
the selected paths, we can determine when the given personnel reaches 
its working hours limitation and should go to its resting location 
accordingly. 

When we insert a new node between two nodes of an existing route, 
we need to decide which arcs/paths to use between the inserted location 
and the preceding and succeeding locations on its route. To this end, we 
develop a set-partitioning model that can optimize path selection de
cisions for all routes/personnel simultaneously for given routes, i.e., the 
sequence of visited locations. Since it requires considerable computa
tional time to apply the proposed set-partitioning model for each new 
solution generated over the course of the proposed heuristic approach, 
we only use it for promising solutions as explained in Section 5.4. For the 
remaining solutions, we develop a path selection (PS) algorithm. When 
two nodes become adjacent after a neighbourhood move applied on a 
solution, the PS algorithm determines the path to be selected between 
the corresponding nodes probabilistically by considering the total 
transportation risk of the corresponding solution. As the solutions 
violate the upper bound on the total transportation risk more, less risky 
paths are chosen and vice versa. 

Another element of our solution encoding (besides the demand 
points visited and the paths used) is the working start time of personnel. 
Personnel are initially set to start to work as early as possible. When a 
new demand point, already served by another personnel, is inserted into 
the route of personnel p ∈ P to generate new solutions, the proposed 
heuristic sets personnel p ∈ P as the last personnel serving the corre
sponding demand point. Therefore, it ensures that the schedules of 
personnel p and personnel p̄ who is the last personnel among the ones 
that have been already serving the corresponding demand point are 
synchronized so that personnel p can take-over the service from 
personnel p̄. To this end, following the insertion move, the arrival time 
of personnel p to the corresponding location and the departure time of 
personnel ̄p are compared. If personnel p arrives after personnel ̄p leaves, 
the working start time of personnel p̄, sp̄, is shifted so as to ensure that 
personnel p arrives before personnel p̄ leaves. If this shift violates any 
constraints, the corresponding insertion move is discarded. Similarly, if 
personnel p arrives before personnel p̄ starting to serve at the corre
sponding location, sp is shifted so that personnel p does not arrive early. 
Again, if this shift violates any constraints, the corresponding insertion 
move is discarded. 

The CH and PS algorithms are provided in more detail in the sup
plementary material to this paper. 

5.4. Tabu search algorithm (TS) 

The TS algorithm, which is shown to be competitive for both routing 
and scheduling problems (Mathlouthi et al., 2021), is used to improve 
the solutions generated by the CH algorithm. In the latter algorithm, 
only one move is executed to generate new solutions which is denoted as 
InsertionOfNewDemand move. In the TS algorithm, we are using two 
more moves to be able to search a wider space: 
InterRouteSwapOfExistingDemands and ChangeRouteOfExistingDemand. In 
InterRouteSwapOfExistingDemands move, two demand points, each from 
a different route of the current solution, are chosen and swapped so that 
the personnel serving these demand points change. In ChangeR
outeOfExistingDemand move, a demand point is chosen from a route of 
the current solution, it is removed from the corresponding route and 
inserted into a new one. When the position of a demand point changes in 
an iteration, the moves that would change that demand point’s position 
again are set as tabu and discarded during the tabu tenure unless the 
aspiration criteria holds. In our implementation, the aspiration criteria is 
the improvement of the best solution. Therefore, a tabu move can be 
performed if it generates a solution better than the best one previously 
found. 

The moves used in the TS algorithm can result in slack (available) 
times at the end of the personnel’s schedules. To exploit the relevant 
times, the CH algorithm is employed at the end of each move by 
considering only the personnel affected by that move and having 
available time at the end of their schedule. Call for the CH algorithm at 
the end of each move is illustrated for an example move presented in the 
supplementary material to this paper. 

The TS algorithm is called to minimize objective function f1 before 
applying the QSH in the 3OP1 model as shown in Algorithm 1. In this 
case, u is simply equal to (∞, ∞) which means that no boundary for 
objective functions f3 and f4 is considered, i.e., the fairness and trans
portation risk of the solutions are disregarded. On the other hand, when 
the TS algorithm is called within the QSH, by its definition, u is regularly 
updated. Thus, the TS algorithm should ensure that f3(x) and f4(x) are 
less than or equal to u1 and u2, respectively, where x is the solution to be 
returned by the TS algorithm. Let X denote the search space spanned by 
the original constraints, i.e., the ones included in the MILP models. We 
do not allow the infeasibility of the original constraints, i.e., do not go 
beyond the boundaries of X during the TS. On the other hand, infeasi
bility of the constraints regarding the boundaries for the objective 
functions is allowed. Accordingly, when the TS algorithm has f2 as the 
objective of interest, it solves the following problem: 

Minimizex∈Xf̄(x) where 
f̄(x) = f2(x) + μ1max(u0 − f1(x),0) + μ2max(u1 − f3(x),0) + μ3max(u2 

− f4(x),0) and μ1, μ2 and μ3 are the coefficients to penalize the violations 
of the boundaries u0, u1 and u2 for objective functions f1, f3 and f4, 
respectively. In a similar way to Vidal, Crainic, Gendreau, Lahrichi, & 
Rei (2012), we allow the infeasibility of particular constraints by 
penalizing the relevant constraint violations on the objective function 
f̄(x) and continuously adjust the penalty values. Whenever a boundary u 
is violated, its associated μ value is multiplied by 1.05% and whenever u 
is satisfied, μ is multiplied by 0.95%. 

Tabu search algorithms aggressively search for local optima and 
thereby they are prone to get stuck in a local optimum (Pirim, Eksioglu, 
& Bayraktar, 2008). Hence, diversification mechanisms enabling to 
escape local optima can improve the performance of the tabu search 
algorithms (Tarhan & Oğuz, 2022). To this end, f̄ is updated so as to 
consider the search history in iteration it of the TS as the following: 

f̄ = f2(x)+ μ1max(u0 − f1(x),0)+ μ2max(u1 − f3(x),0)+ μ3max(u2 −

f4(x),0)+
∑

i∈VI
pdfd(i)Iiaffectedinit 

fd(i) is the number of previous iterations that has changed the posi
tion of demand point i. pd is a pre-determined coefficient to penalize the 
highly frequent moves and guide the search to unexplored regions 
whereas Iiaffectedinit is equal to one if the position of demand point i 
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changes in iteration it, 0 otherwise. fd(i), i ∈ VI, is set to 0 in each 50 
iterations to limit the diversification with the recent search history. 

The TS algorithm first generates solutions by randomly applying one 
of the three moves and updates the current solution even if the new 
solution is slightly worse than the current solution. When it fails to 
update the current solution for a pre-determined number of iterations, it 
produces all possible solutions that can be generated by applying the all 
three moves on the current solution and sets the best of them, in terms of 
function f̄ , as the current solution. A set partitioning model, which is 
presented in the supplementary material to this paper, is solved for the 
new current solution. This model enables to optimize the path selections 
between the nodes visited in the given current solution. Particularly, it 
does not only consider the arcs established by the PS algorithm but it 
considers all possible arcs between all nodes of the routes of the given 
current solution and finds the optimal path selections. When the best 
solution cannot be further improved for a given number of iterations, the 
TS algorithm terminates. The pseudocode of the proposed TS algorithm 
is provided in the supplementary material to this paper. 

6. Computational results 

The static version of the DDRPRS problem (DRPRS) was solved for 
routing and scheduling the personnel involved in two types of disaster 
response services, namely evacuation and medical assistance, in the 
aftermath of the 2018 Lombok Earthquake by Tarhan et al. (2023). The 
evacuation service in this problem instance is to provide temporary 
shelter facilities (tents) to the evacuated population which will be pro
vided medical service at the temporary shelter locations. There is a 
precedence relation between the two services such that the provision of 
the medical services at a temporary shelter location cannot be started 
before at least a single tent is set-up there. Considering this relationship, 
Tarhan et al. (2023) proposed two strategies for the provision of ser
vices: Full and partial demand fulfilment strategy. In the partial demand 
fulfilment strategy, evacuation personnel first set-up a single tent at each 
location and then can proceed with the rest of the set-up of the addi
tional required tents. In the full demand fulfilment strategy, there is no 
such a restriction. To be able to consider the precedence relationship 
between the services, Tarhan et al. (2023) implemented the sequential 
optimization approach so that they first solved the DRPRS problem for 
the evacuation personnel and thereafter, they solved it for the medical 
personnel given the solutions for the evacuation personnel. Since their 
solution approach cannot cope with the large-size problems, they 
considered a part of the impacted Lombok area and a subset of the 
available DRP teams (i.e., a smaller version of the original 2018 Lombok 
Earthquake instance). 

In this paper, we apply the proposed QSH RHA approach for both 
evacuation service, for which demand is discrete, i.e., the number of 
tents to set-up, and medical service, for which demand is continuous, i. 
e., the number of service hours required. To be able to make QSH RHA 
applicable for both types of demands, we convert the discrete demand to 
continuous by multiplying the discrete demand with the time required 
to set-up a single tent and design QSH RHA in consideration of only 
continuous demands. Yet, whenever a new solution is generated for the 
service with discrete demands, i.e., evacuation, the services times are 
trimmed if necessary to guarantee that the demands satisfied are not 
fractional but discrete. 

Performance of the solutions generated by the QSH RHA can vary 
over the planning horizon. Accordingly, decision makers might be 
interested not only in the performance of the solutions by the end of the 
planning horizon but also on a daily basis, i.e., at the end of each day. 
Therefore, we are implementing a temporal Pareto optimality (Coughlin 
& Howe, 1989) to compare the generated solutions. We define 
UnsatisfiedDemandt ,AverageCompletionTimet , Fairnesst and AverageRiskt , 
t ∈ T (where T is the set of periods in the planning horizon), as solution 
evaluation metrics. UnsatisfiedDemandt and Fairnesst metrics of solution 

x, that is generated for period t, correspond to f1(x) and f3(x), respec
tively. On the other hand, AverageCompletionTimet and AverageRiskt, 
t ∈ T, metrics are the summation of f2(x) and f4(x), respectively, for all 
the periods up to period t (inclusive) divided by the total amount of 
satisfied demand by the end of period t. We are using the corresponding 
average values for the purpose of a fair comparison since different so
lutions can have different amounts of demands satisfied by the end of 
each day. 

In Section 6.1, we apply the proposed heuristic algorithm QSH RHA 
for the small Lombok test instance (that involves a smaller representa
tion of the original 2018 Lombok Earthquake instance) to test its per
formance. Then, QSH RHA is applied for the original 2018 Lombok 
Earthquake to evaluate its performance on a larger-size test instance in a 
static environment in Section 6.2. Subsequently, QSH RHA is used to 
analyze the impacts of the dynamic parameter changes on the routing 
and scheduling decisions for the evacuation and medical personnel in 
Section 6.3. 

After preliminary tests, ϵ is set to 0.05 for the evacuation service. On 
the other hand, it is 0.10 for the medical service as the number of so
lutions generated for the corresponding personnel is observed to be 
significantly increasing for smaller ϵ values. ϵ1 is set to 0.20 and 0.05, 
respectively, for the evacuation and medical service. ϵ1 is set higher for 
the evacuation service since increasing the minimum allowable unmet 
demand by a small ϵ1 value may not increase the corresponding solution 
space due to the discrete evacuation demand. To scale the penalty co
efficients for the objective functions f1, f3 and f4 in proportion to f2, we 
consider solution x which minimizes the unmet demand (see Algorithm 
1). Specifically, μ1, μ2 and μ3 are set equal to f2(x)/f1(x), f2(x)/f3(x) and 
f2(x)/f4(x), respectively. Lastly, Max UnimprovedIteration Sub, 
Max UnimprovedIteration Total and pd are 100, 100 and 2, respectively. 
The proposed heuristic algorithm is tested on a workstation with an Intel 
Core i7-8565U processor, 1.80 GHz speed, and 16 GB of RAM, through 
Visual Studio 2019 and the CBC 2.10.5 solver (which was also used to 
solve the set partitioning model). 

For the case study under consideration, the coordinates of the de
mand point locations and the personnel base locations can be found in 
https://doi.org/10.17635/lancaster/researchdata/636. Risks of the re
gions surrounding the transportation network are provided via the 
InaRisk data (where InaRisk is a risk assessment portal launched by the 
Indonesian National Board for Disaster Management) found in https:// 
inarisk.bnpb.go.id:6443/arcgis/rest/services/inaRISK/layer_bahaya 
_gempabumi_2015/ImageServer. We use the route generation procedure 
proposed by Gultom, Haryanto, & Suhartanto (2021) to derive risk 
indices for the transportation network links given the regional risks. In 
short, Gultom et al. (2021) assign a risk index to each link considering 
the average of the risk indices of the nodes defining the corresponding 
link which are extracted from the InaRisk data. 

6.1. Testing the QSH RHA 

In this section, we test the performance of the QSH RHA in terms of 
the solution quality and time, by comparing it with the QSM RHA (which 
is the exact version of the QSH RHA where the 3O1P model is solved 
exactly by using the MILP model in Section 4). Our original 2018 
Lombok Earthquake instance includes 10 personnel teams, 26 demand 
points, 2 depots and 2 resting points. Since this instance cannot be 
solved exactly by the QSM RHA, we consider a sub-instance including 2 
personnel, 12 demand points, 2 depots and 2 resting points that can be 
solved exactly by the QSM RHA. 

Due to the precedence relation between the provision of evacuation 
and medical services, the medical personnel solutions are not indepen
dent of the evacuation personnel solutions. Moreover, the performance 
of the evacuation solutions after the first day of the planning horizon 
depends on their first day performance, which varies in each solution. 
Therefore, for a fair comparison, we applied the QSH RHA and QSM 
RHA algorithms for only the evacuation service and for only the first 
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day. As specified in Section 6, in our computational experiments, we use 
i) different metrics (derived from their objective function values) to 
evaluate solutions and ii) use ϵ values 0.05 and 0.10 for the evacuation 
and medical services, respectively. On the other hand, specifically for 
this section, we consider the objective function values of the solutions 
instead of the relevant metrics and set ϵ value to 0.001 to be able to 
generate the entire Pareto-frontier defined over the objective function 
values of the solutions. 

In Table 1, we compare the QSM RHA and QSH RHA algorithms in 
terms of the number of the (Pareto-optimal) solutions they generate, 
time required to generate these solutions and the ratio of their respective 
hypervolumes HV-QSM RHA and HV-QSH RHA. Hypervolume evaluates 
sets of efficient solutions by taking into account the proximity of the 
solutions to the Pareto front, diversity, and spread (Guerreiro, Fonseca, 
& Paquete, 2020). We use Leb Measure algorithm (Fleischer, 2003) to 
calculate the hypervolumes. A higher hypervolume means a better 
representation of the Pareto-optimal solution set. 

By the definition of the QSM RHA, it generates the entire Pareto 
frontier. Therefore, there are 36 and 84 Pareto-optimal solutions under 
the full and partial demand fulfilment strategies, respectively. The QSH 
RHA enables to find 15 and 12 of the corresponding solutions under each 
strategy. On the other hand, the total number of solutions generated by 
the QSH RHA is 32 and 45, respectively, for each strategy. Comparing 
the hypervolume of these heuristic solutions (HV-QSH RHA) and that for 
the exact solutions (HV-QSM RHA), their ratio is 81% for the full de
mand fulfilment strategy whereas it is 69% for the partial demand 
fulfilment strategy. This implies a reasonable approximation of the 
Pareto frontier by the QSH RHA for both strategies. Moreover, the QSH 
RHA requires much less time in comparison to the QSM RHA. 

Fig. 2 demonstrates the Pareto-optimal solutions over mesh surface 
plots for each algorithm and demand fulfilment strategy. Pareto-optimal 
solutions in this figure are marked in red. These solutions are generated 
through the 3O1P model in which the first objective (i.e., the unsatisfied 
demand minimization) is converted to a constraint. Accordingly, values 
for only three objectives (i.e., f2, f3 and f4 of the MILP model in Section 4) 
are shown in Fig. 2. In line with the hypervolumes of the solutions sets, 
the surface plot for the solutions of the QSH RHA reasonably approxi
mates the plot for those of the QSM RHA under the full demand fulfil
ment strategy. However, the higher the height of the QSH RHA solutions 
plot (see Fig. 2b) expresses the higher the transportation risk of the 
corresponding solutions. As seen in Figure 2d, the QSH RHA solutions 
lead to higher transportation risks under the partial demand fulfilment 
strategy as well. On the other hand, fairness of the solutions ranges 
within similar intervals in the solutions sets of both the QSM RHA and 
QSH RHA algorithm. 

6.2. 2018 Lombok Earthquake instance: Static environment 

In this section, we evaluate the solutions generated by the QSH RHA 
for our original Lombok instance in a static environment where no 
problem parameters change over time. To facilitate the decision-making 
process of the problem owners, we generate a representative subset of 
solutions from the solutions generated by the QSH RHA. To this end, we 

apply the smart Pareto filter (SPF) (Mattson, Mullur, & Messac, 2004) 
which chooses a single representative solution among similar solutions 
in terms of their solution evaluation metrics. The SPF starts from solu
tion S that is on the top of the list of the solutions generated, removes the 
solutions in the remaining list for which solution S does not perform 
worse by more than 0.05 percent (which is a parameter set by us) in 
terms of any solution evaluation metric. Then, it moves to the second 
solution in the remaining list and applies the same filtering and so on 
until it reaches the last solution in the list. 

After the SPF, 7 and 3 solutions remain for the evacuation and 
medical personnel in the full and partial demand fulfilment strategy, 
respectively. In both strategies, it takes 2 and 4 days (periods) to serve 
the entire demand for the evacuation and medical personnel, respec
tively. The evacuation personnel solutions under the full demand 
fulfilment strategy can serve the demand faster. On the other hand, 
under the partial demand fulfilment strategy, the evacuation personnel 
solutions in general can provide a fairer distribution of the evacuation 
services among the demand points. We observe a positive correlation 
between UnsatisfiedDemand and Fairness metrics regardless of the type of 
service considered. On the other hand, the best Fairness values are 
achieved at the expense of higher AverageRisk values. Regarding the 
medical service, medical personnel solutions initially serve the demand 
points with high demand volume. Thus, initially, the medical personnel 
are not travelling between demand points to offer their services since 
they can hardly meet the demand of a single demand point. However, as 
the remaining demand at currently served demand points decreases over 
time, the medical personnel is moving to visit additional demand points. 
Due to the movement of personnel to visit additional locations to pro
vide their services, the travel time component of the corresponding so
lutions is changing and therefore, solutions become more diverse. As a 
consequence, the trade-offs get stronger as the routing component of the 
DRPRS problem is more involved in the decision-making process. 

We observe that solutions having satisfactory performance in terms 
of Fairness, AverageCompletionTime or AverageRisk by the end of a period 
do not necessarily perform well in terms of the respective metrics by the 
end of the succeeding periods. This behaviour can be observed in the 
value path graph presented in Fig. 3. In this graph, we consider unified 
solutions which are generated as follows: We convert the discrete de
mand for evacuation services to continuous (by defining the demand as 
the number of hours required to set-up the tents rather than the number 
of tents), aggregate the evacuation and medical service demand at each 
demand point and compute the solution evaluation metrics by consid
ering the aggregated demand values. As a result, we obtain a single 
unified solution for each medical personnel solution and its associated 
evacuation personnel solution (e.g., solution E1 − M1 in Fig. 3 corre
sponds to the unification of the first medical personnel solution M1 and 
the associated evacuation personnel solution E1). In the value path 
graph, solid and dash lines represent the unified solutions subject to the 
full and partial demand fulfilment strategy, respectively. Each solution 
is represented by connecting 16 values each of which shows its % de
viation from the best/minimum value of a particular solution evaluation 
metric by the end of a particular day. Steeper slopes of the lines/solu
tions between adjacent metrics indicate stronger trade-off for the rele
vant metrics. 

In terms of Fairness, while solutions E1 − M1 and E2 − M2 (E7 − M7 
and E10 − M10) are two of the worst (best) solutions at the end of the first 
day, they are the best (worst) at the end of the third day. Considering 
solution E5 − M5 in terms of Fairness, it is one of the best solutions at the 
end of the first day, worst solution at the end of the second day and it has 
an average performance at the end of the third day. Similar observations 
can be made for other metrics as well. For instance, in terms of 
AverageRisk, solution E2 − M2 is the second best solution at the end of 
the first day while it is the second worst solution at the end of the fourth 
and last day. This suggests that considering a longer horizon can be more 
insightful than a myopic approach that considers only the next day of the 
planning horizon. 

Table 1 
Performances of the QSH RHA and QSM RHA algorithms.   

Full demand 
fulfilment strategy 

Partial demand 
fulfilment strategy  

QSM 
RHA 

QSH 
RHA 

QSM 
RHA 

QSH 
RHA 

Number of solutions generated 36 32 84 45 
Number of Pareto-optimal 

solutions generated 
36 15 84 12 

Time per unit solution generated 
(in sec) 

121.80 16.20 160.20 9.00 

HV - QSH RHA / HV - QSM RHA 81% 69%  
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We also observe that the performance of each demand fulfilment 
strategy varies over time. Specifically, the partial demand fulfilment 
strategy tends to produce fairer, yet riskier, solutions at the beginning of 
the planning horizon. On the other hand, the full demand fulfilment 
strategy produces both the fairest and riskiest solutions towards the end 

of the planning horizon. The partial demand fulfilment strategy provides 
better solutions in terms of average service completion times and fair
ness at the beginning of the planning horizon. However, considering the 
entire horizon, they are not as robust as they can deviate more than 50% 
from the minimum value of particular metrics by the end of particular 

Fig. 2. Mesh surface plots of the Pareto-optimal solutions.  

Fig. 3. Value path for the unified solutions to the large-size static Lombok instance.  

İ. Tarhan et al.                                                                                                                                                                                                                                  



European Journal of Operational Research 314 (2024) 776–791

788

periods. On the other hand, solutions of the full demand fulfilment 
strategy are more robust (e.g., solution E1 − M1 achieves less than 1% 
deviation for most of the metrics and periods). Therefore, for the case 
under consideration, if decision-makers do not prioritize any metrics or 
any periods, they might opt to use the full demand fulfilment strategy 
since it provides better solutions overall. On the other hand, decision 
makers may opt for the partial demand fulfilment strategy if they aim for 
fair demand satisfaction and short service completion times, particularly 
at the beginning of the planning horizon. 

6.3. 2018 Lombok Earthquake instance: Dynamic environment 

In this section, we consider the DDRPRS problem and accordingly 
evaluate the solutions generated by the QSH RHA for our original 
Lombok instance in a dynamic environment where certain parameters 
change over time. 

The DDRPRS problem has mainly three categories of inputs: Supply 
(i.e., available personnel), demand for services and transportation 
network characteristics. The relevant inputs are prone to dynamic 
changes over the planning horizon due to the potential impacts of a 
disaster. To show the applicability of the proposed heuristic QSH RHA to 
the dynamic environment of the DDRPRS problem, we generate two sets 
of scenarios. The first set of scenarios pertains to the impacts of disasters 
on the transportation network and it is analysed in Section 6.3.1. The 
second set of scenarios pertains to the emergence of new demands over 
time and it is analysed in Section 6.3.2. We note that the QSH RHA can 
address the changes in supply availabilities as well. However, as the 
availability of professional DRP is more static in comparison to the de
mand and transportation network, we keep the available personnel 
constant in all scenarios. 

6.3.1. Transportation network disruptions 
Transportation network disruptions due to disasters often obstruct 

the DRP operations and therefore should be taken into account in their 
routing and scheduling decisions. The transportation network can be 
disrupted either in the immediate aftermath of disasters or over time 
(particularly due to their after-effects/after-shocks). Salman & Yücel 
(2015) proposed a distance-based dependency (DBD) model to generate 
scenarios in each of which a different set of links is destroyed in the 
immediate aftermath of a disaster. We apply a modified version of the 
proposed approach to generate scenarios each corresponding to a 
different transportation network. In our application, without loss of 
generality, we assume that the transportation networks failures occur at 
the end of the first day after the disaster. The generated scenarios are 
tested for the large-size Lombok instance and only for the full demand 
fulfilment strategy (not to prolong the discussion). 

The DBD model initially receives a survival probability for each link 
on the network and sets a distance threshold β. Then, iteratively gen
erates a random number between 0 and 1 for each link. If the random 
number is greater than the survival probability of the relevant link, all 
the weaker links (i.e., having smaller survival probability than the 
relevant link) within the distance β are destroyed, if they are not already 
destroyed in the previous iterations. The distance between two links is 
equal to the minimum distance between the four nodes at the end of the 
corresponding links. 

In our DBD implementation, survival probabilities are generated by 
normalizing the risk indices of the links. We assume the connectivity of 
the transportation network, i.e., there is at least one undestroyed link 
between each pair of nodes. Therefore, whenever the last and only 
available link between two nodes should be destroyed according to the 
original DBD model, unlike the original DBD model we do not destroy it 
but we increase its travel time. Specifically, at each time the last link 
between two nodes needs to be destroyed, its travel time is increased by 
10%. To keep the travel times in reasonable limits, we stop increasing 
the travel time of a link if it already exceeded a threshold value defined 
as three times of its original travel time. The underlying assumption in 

increasing the travel times is that in real-world cases, network disrup
tions result to an increase of travel time and not necessarily to a 
discontinuity in the network connectivity. Therefore, we assume that the 
connectivity of the transportation network is preserved while the travel 
times may change depending on the severity of the disruption. 

In practice, decision-makers will know which links are damaged in 
the aftermath of the disaster and make their decisions accordingly. 
However, it would be useful for an effective disaster response to study in 
advance (i.e., in the preparedness phase) different scenarios exempli
fying possible disaster-induced network infrastructure damages. To this 
end, we assess the impacts of network failures by applying the modified 
DBD model for three different distance threshold values β ∈ {5 km,

10 km,20 km}. As Salman & Yücel (2015) set β equal to 15 km, we use a 
range of β values to consider varying degrees of the network disruption. 
For each β value, we apply the modified DBD model for 20 times and 
hence generate 60 scenarios in total. In Table 2, for each β value, we 
provide the range, in the corresponding scenarios, of i) the number of 
efficient solutions generated, ii) the total number of days/periods of the 
planning horizon and iii) the number of nodes that would be discon
nected by the original DBD model. 

We made two key observations in relation to the impacts of the 
transportation network failures on the DRP routing and scheduling de
cisions. First of all, out of total 30 nodes in the large-size Lombok 
instance, 12 nodes can be disconnected from the rest of the nodes in case 
of a high-impact disaster (which represented by the case setting β to 20 
km) according to the original DBD model. More importantly, one of the 
resting points is disconnected from the transportation network in all of 
the 60 scenarios generated. This demonstrates possible improvement 
areas regarding the nodes bearing high risk of becoming disconnected. If 
the node with high risk of becoming disconnected is a resting point, 
decision makers may prefer to choose a safer resting point in terms of 
accessibility. If the node with high risk of becoming disconnected is a 
demand point or a depot, then the transportation infrastructure around 
the corresponding locations can be strengthened in order to mitigate the 
disconnectivity risks. 

The second key observation pertains to the length of the planning 
horizon for the medical services. The number of periods required to meet 
the entire medical service demand can be up to 19 days (which is 4 days 
in the static case). This is due to the increasing travelling times between 
particular demand points and resting points. Due to high travel times 
and resting requirements, personnel can stay at demand points a limited 
time and have to go back to their resting points after a short serving 
time. This necessitates to go back and forth between the same resting 
point and demand point which consequently extends the planning ho
rizon. A potential action to mitigate the corresponding adverse out
comes could be the use of temporary resting points at appropriate 
locations so that personnel do not lose significant time on the road to/ 
from resting points. 

Table 2 
Impacts of the transportation network failures.  

β 
(km) 

Evacuation personnel Medical personnel Range of the 
number of 
disconnected 
nodes*  

Range of the number of Range of the number of   

efficient 
solutions 

days of the 
planning 
horizon 

efficient 
solutions 

days of the 
planning 
horizon  

5 [2–8] [2–3] [2–8] [11–16] [1–5] 
10 [1–11] [2–3] [1–11] [6–17] [1–7] 
20 [1–3] [2–3] [1–9] [5–19] [1–12]  

* This columns shows the range of the number of nodes that would be 
disconnected from the network if the original DBD model would have been 
applied. 
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6.3.2. Emergence of new demand 
Eshghi & Larson (2008) categorize disasters in six groups based on 

the number of fatal and affected victims: emergency situation, crisis 
situation, minor disaster, moderate disaster, major disaster and catas
trophe. According to their categorization, Lombok Earthquake lies in the 
‘emergency situation’ group for which the range of the number of fatal 
(affected) victims is between 10 and 100 (between 100 and 1000). Alem, 
Clark, & Moreno (2016) consider a stochastic network model for disaster 
relief and use the transition probabilities among different disaster types. 
Particularly, ‘emergency situation’ transits to ‘emergency situation’ with 
probability 0.75 and transits to ‘crisis situation’ with probability 0.25. 
The number of fatal (affected) victims is between 100 and 1000 (be
tween 1000 and 10000) for the crisis situation. We assume that the 
demand for the evacuation and medical personnel is positively corre
lated with the number of victims and the demand in a crisis situation is 
ten times of the demand in an emergency situation on average consid
ering the range for the number of fatal and affected victims for them. 
Then, in line with the transition probabilities, we assume that in case of a 
secondary disaster (or an aftershock) following an emergency situation 
(or simply the evolution of the initial emergency situation), the new 
demand can have a similar magnitude to that of the initial demand by 
probability 0.75 and it can be around ten times of the initial demand by 
probability 0.25. 

To consider the dynamic changes in demands, we assume that new 
demands emerge at the end of the first day at the same locations affected 
by the initial disaster without loss of generality. Let d̄i be equal to [0.75di 
+0.25di10] where di is the initial evacuation or medical personnel de
mand of the demand point i depending on the service of interest. The 
amount of the new demand for demand point i,∀i ∈ VI, is assumed to be 
in [0.75d̄i, 1.25d̄i]. 30 different scenarios are produced by randomly 
generating new demands in the relevant ranges to assess the impacts of 
the demand changes on the DRPRS problem. In the first period, the 
priority of each demand point is assumed to be equal to one. At the 
subsequent periods, a random priority within the range [1,3] (repre
senting increasing urgency) is set for each demand point with unsatisfied 
demand at the end of the first period. The underlying assumption is that 
it is reasonably sufficient to consider scenarios where a demand can be 
three times more urgent than another demand. 

For each of the evacuation and medical service, we present results for 
a representative scenario for convenience. In Table 3, eleven efficient 
evacuation solutions for the representative scenario are presented. 

Due to the emergence of new demand at the end of first day, evac
uation demand can be satisfied in three periods (unlike two periods for 
the static case presented in Section 6.2). Therefore, we have more effi
cient evacuation personnel solutions for this dynamic case since the 
number of efficient solutions tends to increase with the number of 

periods. The average service completion times and average risks of the 
solutions after the first period are higher than those for the static case 
due to the higher amount of demand and higher priority of demands. 
The ranges of the average service completion time and average risk are 
wider than those for the static case. For example, Solution ED8 has 
higher average service completion time than its maximum value for the 
static case yet has smaller average risk than its maximum value for the 
static case. This indicates stronger trade-offs for the relevant solution 
evaluation metrics. 

The efficient medical personnel solutions for the representative 
scenario are shared in Table 4. We note that due to the limited space, the 
solution evaluation metric values are only provided for the first three 
and the last period of the planning horizon. While the medical personnel 
solutions for the static large-size instance have comparable 
UnsatisfiedDemand and AverageCompletionTime metric values by the end 
of the second and third days, the relevant metrics are getting more 
diverged after the arrival of new demands. On the other hand, 
AverageRisk metric is less affected by the new demand arrivals. In terms 
of Fairness, the emergence of new demands at the end of the first day 
results in less fair solutions by the end of the second and third days in 
comparison to corresponding Fairness values for the static case. 

7. Concluding remarks 

In this paper, we have extended the disaster response personnel 
routing and scheduling problem (Tarhan et al., 2023) by considering the 
dynamic effects of natural disasters. To this end, we have developed a 
MILP model and a heuristic algorithm for solving large-size problem 
instances. The proposed heuristic (QSH) is based on the quadrant 
shrinking method and is applied over a rolling horizon to generate 
efficient solutions for each day (with respect to the minimization of i) 
total unmet demand, ii) the total service completion time, iii) unfair 
distribution of the unsatisfied demand among different demand points 
and iv) the total transportation risk) until all demand is satisfied. We first 
tested the QSH by using a static small-size instance and showed that the 
proposed heuristic can approximate its Pareto frontier successfully. 
Subsequently, we applied the QSH to a larger-size static Lombok 
instance and analyzed two different demand satisfaction strategies: full 
and partial demand fulfilment. 

We used the proposed DDRPRS model and the associated solution 
algorithm QSH to study the behavior of partial and full demand fulfil
ment strategies. We found that the full demand fulfilment strategy leads 
to smaller unsatisfied demand and generates more robust solutions over 
the planning horizon in comparison to the partial demand fulfilment 
strategy. On the other hand, while the performance of the partial de
mand fulfilment strategy solutions fluctuate more over the planning 

Table 3 
Non-dominated solutions for the evacuation personnel under the full demand fulfilment strategy in dynamic demand large-size Lombok instance.  

Evacuation personnel solution Unsatisfied Demand (number of tents) Average CompletionTime (hours) Fairness* Average Risk (InaRisk index**) 

Up to period Up to period Up to period Up to period  

1 2 3 1 2 3 1 2 3 1 2 3 

ED1 8 18 0 8.42 22.33 35.72 0.32 0.26 0.00 20.13 58.45 175.37 
ED2 8 18 0 10.32 29.14 46.62 0.32 0.21 0.00 20.13 57.92 174.70 
ED3 8 15 0 9.76 20.71 33.14 0.32 0.17 0.00 20.13 60.96 177.40 
ED4 8 14 0 8.06 21.67 34.67 0.32 0.14 0.00 20.13 66.21 189.28 
ED5 9 14 0 8.92 34.85 55.75 0.35 0.15 0.00 17.24 58.38 177.26 
ED6 9 12 0 10.99 38.94 62.31 0.51 0.18 0.00 17.94 61.58 182.41 
ED7 9 14 0 8.75 26.68 42.68 0.51 0.16 0.00 17.94 60.73 179.55 
ED8 9 15 0 9.37 29.32 47.70 0.60 0.25 0.00 13.17 46.98 145.47 
ED9 9 13 0 10.74 21.85 48.48 0.60 0.32 0.00 13.17 48.07 148.04 
ED10 9 14 0 8.06 24.77 59.69 0.60 0.17 0.00 13.17 52.85 151.70 
ED11 9 15 0 10.06 20.45 39.83 0.60 0.51 0.00 13.17 58.95 168.63  

* Fairness is ranged between zero and one where lower values indicate fairer solutions. 
** InaRisk index of a single arc ranges between 0.38 and 247.20 where lower values indicate lower risk.  
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horizon, they can provide fairer solutions at the beginning of the 
decision-making horizon, at the expense of higher transportation risks. 
Regardless of the strategy used, the performances of generated solutions 
fluctuates over time. This behaviour underlines the advantage of 
considering sufficiently long planning horizon instead of a myopic 
approach focusing on a shorter horizon. 

To consider the dynamic changes on problem parameters, particu
larly on the demand and transportation network attributes, we analyzed 
two types of scenarios using the static large-size Lombok instance. We 
first analyzed a set of scenarios in which the transportation network is 
damaged to a different extent after the onset of the disaster. Computa
tional experiments show that certain nodes can bear high risk of inac
cessibility. This type of analysis can provide useful information 
regarding the identification of the components of transportation 
network infrastructure that should be strengthened. In the second type 
of scenarios, we considered the emergence of new demand over time. 
Computational results show that the arrival of new demand can prolong 
significantly the planning horizon. The dynamic consideration of the 
demand over an extended planning horizon provides useful information 
to the decision-makers regarding the evolution of the trade-off between 
conflicting objectives. 

Promising directions for future research that will enhance the pro
posed DDRPRS model include the endogenous consideration of the 
location decisions of the resting points of the DRP, and the investigation 
of the potential benefits emerging from the relocation of the resting 
points and/or the introduction of additional resting points as a pro- 
active disaster preparedness measure in the anticipation of trans
portation network damages. 
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