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1. Introduction

Vehicle Routing Problems (VRPs) are one of the most important classes
of NP-hard combinatorial optimisation problems that have been subject to
research for more than fifty years Laporte (2009). Due the complex nature
of the VRPs and their real-world practicality, various versions have been im-
plemented with different structures and operational constraints, challenging
researchers to develop a rich suite of methodologies and efficient solution
methods for solving such a complex problem. There is a growing interest
nowdays in the application of optimisation techniques in real-world rout-
ing problems due to the increasing demand by industrial and commercial
partners who are competing to deliver efficient services for their customers
while effectively reducing their expenditures. As a result, several well-known
companies have been approaching academic institutions and organising chal-
lenges in cooperation with research groups to encourage researchers into de-
veloping efficient solution methods and to compete in delivering high quality
results for real-world problems encountered in their businesses. The research
field also benefits from such connections, which can result in the availability
of real-world benchmarks, and enrich the research with novel versions of
routing problems from real life applications.
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One important application of VRPs in the current urban societies is
the development of efficient public transit services. The ever-increasing use
of private transportation throughout the cities of the world is resulting in
unacceptable levels of congestion, pollution, and environmental, social and
economic cost. This has led to move towards improving public transporta-
tion services and encouraging citizens to use them more. To fulfil the current
needs of modern cities in delivering efficient, economical, and environmen-
tally friendly transportation systems, careful planning is required in the
design phase to avoid excessive waiting and travelling times and reducing
the operational costs. The design of public transit systems is a complicated
task that needs to satisfy the requirements of many stakeholders with con-
flicting needs, including passengers and transportation companies. One key
stage is the design of routes over a given network to provide an efficient
service for passengers and network operators. This problem is referred to as
the Urban Transit Routing Problem (UTRP). The UTRP is considered an
enormous challenge for optimisation algorithms, because of the huge com-
plexity imposed by the multiple constraints which define the criteria for
accepting feasible solutions, and the many conflicting objectives that the
designed network should satisfy. This makes finding near optimal solutions
extremely difficult.

Years of research in the optimisation of combinatorial problems led to
the development of a variety of methods which participated in finding in-
creasingly competitive results in many intractable computational problems
such as VRPs. However, most of these methods have been finely tuned to
work well on one problem or an instance of a problem. This has lead to the
lack of general problem solving methodologies and the creation of a range
of methods that work well on specific problem structures, while not being
able to perform as well in other problem versions without significant human
input. This issue has urged researchers to develop methods that are more
general and can adapt to changes in the problem domain. Recently, research
has focused on a class of algorithms known as hyper-heuristics Burke et al.
(2013) that have the potential to adapt to changes in the problem domain,
making their application to different problems and instances easier than
other search methodologies. Hyper-heuristics, which are defined as heuris-
tics to choose heuristics, is separated from any specific domain knowledge by
what is called “domain barrier”, and therefore it can focus on providing suf-
ficiently good solutions without the need for lengthy run-times or significant
input. Since the development of the hyper-heuristic framework, it has been
utilised in solving several combinatorial problems, and routing problems is a
domain in which hyper-heuristics has had an outstanding record of success.
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2. Research Motivation and Contributions

Meta-heuristics have enjoyed some success on versions of the UTRP,
with genetic algorithms (GAs) as a particularly popular choice Fan and
Machemehl (2006a); Fan and Mumford (2010); Mumford (2013). However,
one of the main shortcomings of applying population-based algorithms to
solve the UTRP are the significantly long run times when solving large in-
stances, which can extend to days rather than hours as has been reported in
John (2016). Running such algorithms on large instances may often require
the use of a high performance cluster, and yet the execution time remains un-
reasonably long especially when the number of generations increases. This
has led to limiting the implementation of population-based algorithms to
relatively small instances. Cooper et al. (2014) used parallelism to solve the
run time problems of the UTRP, but this cannot be a definitive solution as
it requires the use of a cluster of high performance computers.

In this work, we propose hyper-heuristics as a possible way forward.
Hyper-heuristics have a clear advantage in terms of run time over population-
based methods such as GAs because their focus is on a single point in
the search space, rather than a population of points. Furthermore, hyper-
heuristics have built-in mechanisms that carry out the tuning and param-
eter setting without the need for human intervention, and use only sim-
ple low level heuristics that are fast and easy to design. Although hyper-
heuristics are designed as problem independent methods, many researchers
have shown that the choice of selection hyper-heuristics components highly
influence their performance Bilgin et al. (2006); Özcan et al. (2008). Thus,
we focus on examining and comparing the performance of several selection
hyper-heuristics, combining different known selection and move acceptance
methods on the route design problem (UTRP) with the goal of minimising
the average passengers travel time, and the costs to the operators. More-
over, there is a lack in the UTRP research for simplified models that are
also applicable to real world size instances. Most of the currently available
methods applied to real world size instances of cities and towns are specifi-
cally designed to work on those instances, and they are not available publicly
in the majority of these studies. This has motivated us to contribute with
our methodologies to find state-of-the-art results to a new published set of
instances with real world size and characteristics, and also to prove that
hyper-heuristics continue to perform well in terms of run time and solu-
tion quality compared to multi-objective evolutionary frameworks such as
NSGAII.

We have also observed the gap in the research between the purely aca-
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demic studies in the automatic public transport route optimisation and real
world planning processes. Therefore, there is an urge to develop algorithms
that can bridge the gap between the theoretical research of the UTRP and
the real world transportation planning. A hyper-heuristic is a good candi-
date for such application, being a single-point based framework, and there-
fore able to facilitate the interaction with a transport modelling software
package. Finally, we wanted to explore the generality of hyper-heuristics to
solve different VRP versions that is as complex as the UTRP, with a real
world impact.

The key research questions we are addressing are:

1. How can a selection hyper-heuristic being a single-point based frame-
work succeed in overcoming the run time issues in population-based
methods while delivering high quality solutions in small as well as large
size instances?

2. How can we extend our implementation of the hyper-heuristic frame-
work to be applied on more complex versions of the UTRP and on
instances with real-world size and characteristics?

3. How can we bridge the gap between academic versions of the UTRP
and real-world transportation systems planning by integrating the al-
gorithms used to solve the UTRP theoretically with a commercial
software package used by transportation systems planners?

4. How can we generalise the application of hyper-heuristics in different
domains of complex routing problems and prove its effectiveness and
computational efficiency?

The main contributions of this work are:

• A novel implementation of a selection hyper-heuristic algorithm
for solving the UTRP by implementing and testing several com-
ponents of selection and move acceptance methods.

• Testing an online learning selection method based on the Hid-
den Markov Model (HMM) and show that it is more effective
compared to other non-learning random selection methods.

• Comparison with the state-of-the-art methods from the literature
and finding new best results for Mandl instance with 6, 7, and 8
routes and the instances of Mumford data set.
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• Using the weighted sum approach to mitigate the effect of main-
taining a population of solutions which causes serious run time
limitations while solving the UTRP.

• A hyper-heuristic algorithm for solving the UTRP on real world
scale instances with fixed terminal nodes. A set of specialised
operators are implemented to handle the presence of fixed termi-
nals.

• A comparison with the NSGAII evolutionary multi-objective frame-
work approximate Pareto front, and real-world bus routes to show
the excellence of our results.

3. The Concept of Optimisation

In mathematics and computer science, optimisation refers to the selec-
tion of the best element from a set of available alternatives using a mathe-
matical function, or a criterion on which to base the selection decision. In
the simplest form, optimisation can refer to the minimisation or maximi-
sation of a function named the “objective function”, by choosing an input
or a set of inputs, and calculating the value of the objective function. The
optimisation is usually subject to a set of constraints defined according to
the problem domain, and the optimised problem is either a maximisation or
a minimisation problem, where in the former the calculated objective value
is maximised, and minimised in the latter.

An optimisation problem can be formulated in the following way: f :
A → R, a function from a set A to the real numbers R, the goal is to find
an element xo ∈ A, such that f(xo) ≤ f(x) ∀x ∈ A (minimisation), or
f(xo) ≥ f(x) ∀x ∈ A (maximisation). The set A is known as the “solution
space”, or the space of candidate solutions, and f is the objective function
that calculates the value of the candidates in A. The solution xo is the best
global optimum and which the optimisation procedure seeks to find.

A variety of optimisation algorithms have been developed over the years
motivated by the practical importance of optimisation in taking critical de-
cisions in many large scale applications, and its contribution to cost saving
and service improvements. However, due to the enormous search spaces in-
volved in many real-world problems, manual application of these algorithms
is not realistic. For this reason, the automation of the optimisation process
is the only valid option. In the next sections we will further explore the time
and computational complexity associated with some optimisation problems,
and describe the algorithms suitable for solving them.
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3.1. Optimisation of Combinatorial Problems
As mentioned above, an optimisation algorithm aims to find the best con-

figuration from a set of variables defined on the solution domain to achieve
defined goals. There are two important paradigms of optimisation that are
used to categorise optimisation problems: discrete optimisation and contin-
uous optimisation. In the discrete optimisation, some or all of the decision
variables belong to a discrete set of values, in contrast to the continuous
optimisation, in which the variables are allowed to take a value from within
a range of values. Within the discrete optimisation problems, there is a
category of problems known as the Combinatorial Optimisation problems
(COPs).

Combinatorial optimisation is a special case of of discrete optimisation,
where the search for an optimal solution is conducted on a finite set of
solutions which can be represented by a structure, such as a graph or a per-
mutation. According to Papadimitriou and Steiglitz (1998), in COPs we are
looking for an object from a finite set or possibly countable infinite set, and
this object can be a subset, a permutation, or a graph structure. As in the
general optimisation problems, the goal in a COP is to find a set of globally
optimal solutions as defined by an objective function. However, in cases of
COPs when the space of finite solutions is very large and increases expo-
nentially with the increase in the problem size, exhaustive search methods
become intractable and impractical to apply. Typical example of problems
involving combinatorial optimisation are: the Travelling Salesman Problem
(TSP), the Bin Packing Problem, Boolean Satisfiability (SAT), Quadratic
Assignment (QAT), and scheduling and timetabling problems.

Beside the theoretical relevance of COPs, they are also practically impor-
tant due to their applicability in many real-world scenarios. Such domains
in which we can see COPs include: routing, scheduling, decision making,
production planning, energy, transportation and telecommunication. Many
COPs can be represented as graphs. In this class of problems, the solution
domain is represented by a graph structure, and the goal is to find an optimal
solution in the form of a sub-graph containing a subset of the graph edges
and nodes. Typically, route design optimisation problems are classified as
graph-based COPs.

In principal, if the feasible solution space is finite, any COP can be solved
exactly by an algorithm that can identify all the feasible solutions and find
the best of them according to the objective function evaluation. However,
the feasible solution space grows exponentially with the size of the instance
to be solved, and therefore such a simple approach is not applicable for
practical problems. According to Blum and Roli (2003), solution methods
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for COPs can be broadly classified as complete, or approximate algorithms.
In the complete (exact) solution methods, an optimal solution is guaranteed
to finite size instances in bounded time, while for NP-hard COPs that can-
not be solved in polynomial time (section 3.2), these methods will require
an exponential time in the worst case to find an optimal solution which is
a significantly high computation time for practical purposes. For this rea-
son, approximate methods have been more popular and received increasing
attention. Amongst these methods are heuristics (constructive and local
search methods), and meta-heuristics methods.

3.2. NP-Hard and NP-Complete Problems

The foundations of the computational complexity theory were put down
by Cook (1971) and Karp (1972), who introduced a framework for measuring
the computational complexity of a problem. The computational complexity
theory provides a basis for calculating the complexity of a problem based on
how the required time for solving the problem increases as the problem size
gets larger. In other words, the time complexity of a problem is expressed in
terms of a complexity function that calculates the time requirements for each
possible input length. This function is referred to as the big O notation. For
a given input of length n, the notation O() provides a function proportional
to the maximum number of operations that should be performed, given that
input.

Algorithms with time complexity O(nk) for some constant k, are called
polynomial time algorithms. These algorithms are described as tractable,
as it is quite feasible to run algorithms of this complexity with large inputs
using the kinds of computers we have today. In contrast, exponential time
algorithms of time complexity O(kn) are intractable and grow much faster
than any polynomial function. An intractable problem is a problem that
cannot be solved by any polynomial time algorithm, such as the above ex-
ample of exponential time algorithms, and the factorial run time algorithms
O(n!) that grow even faster.

An important class of computational problems are the nondeterministi-
cally polynomial problems (NP), which are described as the decision prob-
lems that are whether or not it is tractable to find their solution, the veri-
fication of this solution is polynomial or tractable. The class of polynomial
problems which can be solved by means of a polynomial-time algorithm, is
called P. Trivially, P is a subset of NP (P ⊆ NP ).

If M and M’ are NP problems such that M’ is significantly harder than
M (i.e., any reduction, or translation of M’ to M takes more than polynomial
time), then M cannot be amongst the hardest of NP problems. For M to
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Figure 1: Relationship between P, NP, NP-Hard, and NP-Complete problems

be one of the hardest NP problems, it is necessary that any NP problem
M’ is reducible to it in polynomial time. This is the motivation for the
following definitions: A decision problem M is NP-hard if any NP problem
can be reduced to M in polynomial time (so no NP problem is more than
polynomially harder than M), and M is not necessarily an NP problem
(not a decision problem that has a ”yes” or ”no” answer). A problem is
NP-complete if it is both NP and NP-hard, i.e., it is an NP problem for
which no NP problem is more than polynomially harder. Therefore, the
NP-complete problems are the hardest amongst the NP problems. Figure 1
illustrates the relation between P, NP-Hard, and NP-Complete problems.

We should note that the existence of NP-Hard, and NP-Complete prob-
lems are based on the assumption that P ̸= NP . Whether or not this
assumption is actually true remains one of the most famous unsolved prob-
lems in computer science. Currently, no one has yet discovered an algorithm
to solve an NP-complete problem in a polynomial time, and it is also un-
proved that such algorithm does not exist. If a polynomial time algorithm
that solves one of the NP-complete problems is found, this will consequently
mean that the entire class NP is contained in P, so we would have P=NP. If
this has ever became true, it will have a profound scientific consequences, be-
cause it will lead to the availability of polynomial algorithms to solve a large
class of important practical problems which are thought to be intractable
and to which a great effort has been spent to develop algorithms that solve
it approximately.

Almost all vehicle routing and scheduling problems are NP-hard and
cannot be solved in polynomial time. Exact approaches are only successful
in solving small versions of such problems and are not feasible for larger
instances in terms of the computational time requirements.
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3.3. Single and Multi-Objective Optimisation

A single objective optimisation problem can be defined as: the minimi-
sation or maximisation of a single function f(x) subject to a set of con-
straints, where x ∈ Ω. The function f(x) is named the objective function,
and x = {x1, x2 . . . xn} is an n-dimensional decision variable vector from
some universe Ω. Ω is a domain that contains all the possible x that sat-
isfies the evaluation of f(x) and all its constraints. The vector x and the
scalar function f(x) can be discrete or continuous. In the single objective
optimisation, the optimisation focuses solely on minimising or maximising
f(x) (i.e., single decision optimisation).

Another category of optimisation problems named “multi-objective op-
timisation problems” (MOOPs) involve multiple objective functions that
are to be minimised or maximised simultaneously, and similar to the single-
objective problems, the multi-objective problems contain a set of constraints
that must all be satisfied by a feasible solution. In a MOOP, the concept of
a globally optimal solution does not apply, but rather the goal is to find a set
of solutions that provide a good balance between several contradicting ob-
jectives. Most of the real world problems are multi-objective in nature and
involve several stakeholders and decision making criteria. Examples are Ve-
hicle Routing Problems (VRPs), where the efficiency of the service delivered
to the customers must be balanced with the total encountered costs.

MOOPs can be formally stated as follows: F (x) = {f1(), f2(x) . . . fk(x)},
subject to: gi(x) ≤ 0; i = 1 . . . , n, s.t: x ∈ U , where x is a solution, k ≥ 2 is
the number of objective functions, n is the number of constraints, and U is a
feasible set. The solution x is given as a decision vector x = {x1, x2, . . . xm},
where m is the number of decision variables. A single solution in MOOP
cannot improve all objective functions simultaneously, but rather Pareto
optimality is used to describe the set of solutions that provide a trade-off
between the multiple objectives. A solution is said to be Pareto optimal, if
it is not possible to move from this solution to a solution that is better for
one objective without worsening the other objectives. The set of all Pareto
optimal solutions is known as the Pareto front or the non-dominated front
(figure 2), and these solutions are not dominated by any other solution in
the search space.

Multi-objective optimisation techniques can be classified based on how
to combine the decision making and search into the following approaches:

• Priori approach: in this method, the weights and the preferences of the
objectives are set prior to the search process by the decision maker.

9



0

F2

F
1

Pareto-front

Pareto-optimal

Non-optimal solution

Figure 2: Pareto-front and Pareto optimal solutions

An example of this is the weighted sum approach, where the weight of
each objective is set before the start of the search.

• Posteriori approach: the search is conducted to find a set of solutions,
and a decision process is then applied to select the most appropriate
solutions (trade-off solutions). Examples of this approach are evolu-
tionary algorithms.

• Interactive (progressive approach): in this class, the decision maker
can adjust the preferences while the search is ongoing, or alternatively
it can be done automatically by the algorithm (e.g. SAWing).

Several methodologies have been developed for solving MOOPs, includ-
ing the weighted-sum approach, the ϵ-constraint method, and Evolutionary
Algorithms (EAs).

4. Graph Structure

As mentioned in section 3.1, an important class of CO problems such
as route design optimisation problems are graph-based, where the solution
forms part of a sub-component of the graph, and all the operations are pre-
formed on a graph structure. In this section we represent the fundamentals
of the graph theory, which is essential to the understanding of the problems
definitions proposed in this paper.
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A graph G = (V,E) is defined as a set of vertices V = {v1, v2, ..., vn}, and
a set of edges E = {e1, e2, ...em}, where each edge e = {u, v} is associated
with a set of two unordered vertices belonging to V . In this example, the
edge e, is said to be connecting the two vertices u, v. An edge is defined as
incident to a vertex, if this vertex is contained within the set that defines
this edge.

A simple graph is defined as a graph that is undirected, has at most one
edge between any two pair of vertices, and has no self loops. A loop exists in
a graph when there is at least one edge in the edge set that does not connect
two distinct pair of vertices (i.e., it connects an edge to itself, e = (u, u)).
An edge that connects an edge to itself is named a “loop”, and if it connects
two distinct pair of vertices, it is named a “link”.

A multi-edge exists when the edge set contains more than one edge with
the same incident vertices, and a graph is named a multi-graph, if it contains
a loop, or several edges between the same pair of vertices. A graph is also
defined as a directed graph when an edge connects a pair of two ordered
vertices, such that: {u, v} ≠ {v, u}. An example of a directed and an
undirected graph is shown in figure 3.

A graph G′ is defined as the subgraph of the graph G, if it contains
a subset of its vertices V ′ ⊆ V , and a subset of its edges E′ ⊆ E. Of a
particular interest is the induced subgraph, in which a specific subset of the
vertices is selected, along with the set of edges that connected the pairs of
vertices in this subset in the original graph. It can be defined as the graph G′

s

that has the subset of vertices S, and has all the edges in E with endpoints
that belong to S. Figure 3(c), is an induced subgraph from the undirected
graph (a) that includes the vertices A, B, C, and E. Another important class
of subgraphs is the spanning subgraph which can be defined as G′ = {V,E′},
in other words, it is the subgraph that contains all the existing vertices of
the original graph and a subset of its edges.

A walk in a graph is defined as a sequence of edges, that are connected
by a sequence of vertices. We can refer to it by W = v1, e1, v2, e2, . . . en, vn,
such that each edge ei has the the vertices vi−1, vi as its endpoints. A trail
is defined as a walk with distinct edges, and the path is a trail with distinct
vertices. A connected graph is said to have a walk between every possible
pair of vertices in the vertices set, otherwise the graph is unconnected leaving
some of its vertices isolated (i.e., has no adjacent vertices).

A weighted graph, is the graph where each edge is associated with a
weight value (figure 3 (f)). This graph is particularly useful in applications
where the shortest path or the distance between pairs of vertices should be
calculated.
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Figure 3: Demonstration of different types of graphs

Finally, we define the concept of adjacency between the graph vertices.
Two vertices are adjacent to each other if and only if there exists an edge
connecting these two vertices. In other words, adjacent vertices are incident
on an edge. A single vertex can be adjacent to several vertices, and the
degree of a vertex is defined as the number of its adjacent vertices. An
isolated vertex has a degree zero, and the presence of a such vertex in the
graph means that this graph is unconnected (i.e., figure 3 (e), vertex D).

A graph can be simply represented by a structure called an adjacency
matrix. For a graph G, where |V | = n, the adjacency matrix Anxn is a
matrix with entries of zero and one values, where each entry Ai,j equals one
if the two vertices vi, vj are adjacent, and zero otherwise. This matrix is
symmetrical in the case of simple undirected graphs (i.e., directed graphs
are generally not symmetric).
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5. The Vehicle Routing Problem

The well-know class of combinatorial optimisation problems, known as
vehicle routing problems, emerged in the fields of transportation, and dis-
tribution management motivated by the needs of these industries to save
expenditures, where major savings can occur by optimising some measures
of the transportation system. In fact, a large portion of the logistics costs
are related to distribution, leading to more attention to apply optimisation
techniques for costs saving.

Routing and scheduling problems encountered in industry or travel have
a high degree of complexity, involving multiple variables and constraints.
Modelling these problems require some types of simplifications and adjust-
ments to make them tractable by optimisation algorithms. Nevertheless,
even with these simplifications, obtaining optimal solutions is still a chal-
lenge.

The VRP is one of the most well-known and extensively studied problems
in combinatorial optimisation, and the foundation of this research dates back
to 1959 in the study by Dantzig and Ramser (1959) named “A Truck Dis-
patching Problem”. The study tackled a real-life application of distributing
gasoline among a number of service stations, with the goal of finding optimal
travel routes with the minimum travelling distance. Since the introduction
of this problem sixty years ago, it has attracted a great number of researchers
given its complexity and challenging nature, and most importantly its prac-
tical applicability in the real-world. Due to this, many other VRP variants
were proposed to model real life situations.

The main goal in VRPs is to determine a set of routes for a fleet of
vehicles located at one or multiple depots to serve the demand at a number
of geographically dispersed locations known as customers. These vehicles
are operated by a crew of drivers and travel through an appropriate road
network. In the most basic version of a VRP (figure 4), a homogeneous
fleet of vehicles serves customers’ demand by visiting each customer exactly
once, and the journey of each vehicle starts and terminates at the depot.
The objective is to find a set of routes, each performed by a single vehicle,
such that all customers’ requests are delivered, the operational constraints
are satisfied, and the overall transportation costs (i.e., travel time, distance)
are minimised.

Further, there are many other constraints that can be added to to the
basic version, depending on the nature of the delivery/distribution problem.
One of the most commonly applied constraints is a capacity constraint on the
size of the vehicles. This version of the VRP is named the Capacitated VRP,
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Figure 4: Solution to the basic VRP

in which each customer demand must not exceed the vehicle capacity. The
CVRP is one of the most well studied versions of the VRP and forms the ba-
sis of other variants (see section 5.2 for more on VRP variants). The CVRP
can be considered the simplest VRP version, in which it is assumed that the
vehicles are identical and belong to the same depot. Using the graph nota-
tions, the CVRP can be described as: a set of customers C = {c1, c2, . . . cn}
scattered on different geographical locations (x1, y1), (x2, y2) . . . (xn, yn), and
a depot node {0} located at position (x0, y0). A graph G = (V,A) exists,
where the graph vertices V = {0}

⋃
C. There are a number of vehicles M

located in the depot to serve customers’ requests, and each has a limited
capacity Q, where customer demand di cannot be divided, and hence cannot
exceed the vehicle capacity (di ≤ Q ∀ci ∈ C).

5.1. The Travelling Salesman Problem

VRPs are NP-hard combinatorial problems originating from the classi-
cal Travelling Salesman Problem (TSP). The Travelling Salesman Problem
(TSP) is a well-known NP-hard problem that has been studied by many
researchers due to its various applications in real-world problems. Some
of these applications include: computer wiring, dashboard design, job se-
quencing, vehicle routing, and warehouse automation systems. It was firstly
defined by the two mathematicians William R Hamilton and Thomas Kirk-
man in the 19th century. The basic definition of the problem involves a
salesman who wishes to travel between a number of cities returning home
at the end, and the goal is to find the sequence in which he can visit all the
cities while minimising the total travelled distance. Although the problem
definition appears to be simple, it is until now considered one of the most
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challenging problems in the field of operational research Laporte (1992). We
will briefly describe the mathematical definition of the TSP, as it is consid-
ered the basis for other important routing applications.

Following the graph theory described in section 4, the TSP involves a
graph G = {V,E} containing a set of vertices V , and a set of edges E. The
goal is to find a minimum distance circuit that passes each vertex only once
and returns back to the origin vertex. This cycle is known as a Hamiltonian
cycle. For example, if the graph G has the set of vertices V = {a, b, c, d},
a Hamiltonian cycle can be {(a, b), (b, c), (c, d), (d, a)}. Therefore, the TSP
aims to find the minimum cost Hamiltonian cycle through the given cities.
Typically, the TSP is formulated as a weighted graph, and the edge weights
can be calculated in several ways such as the euclidean distance between
two points using the formula: If it is required to calculate the distance
between two cities at locations i = (x1, y1), and j = (x2, y2) then: Di,j =√
(x1 − x2)2 + (y1 − y2)2.
Several problems have originated from the TSP, such as the multiple

TSP and other Vehicle Routing Problems (VRPs). In the multiple TSP,
more than one salesman can be used in the solution and accordingly the so-
lution consists of multiple routes. This draws a similarity to the VRP, where
Dantzig and Ramser (1959) proved that this problem is a actually a gen-
eralisation of the TSP. However, VRP variants involve various operational
constraints, in terms of the vehicles capacity, deliveries time windows, and
the distribution and scheduling of deliveries making them even more chal-
lenging to address.

5.2. Overview of VRP Variants

In real world applications, and because of the complexity and diversity
of the real-world systems, the CVRP only represents a narrow class of cases
in a simplified way. However, the CVRP is one of the elementary variants
of VRP from which other variants originated. Recalling from section 5, in
the basic CVRP version, the goal is to find the minimum cost routes for
serving a set of geographically dispersed customers with known demands. A
fleet of homogeneous vehicles with fixed capacity located at a central depot
serves the customers’ requests, and each customer is visited exactly once to
satisfy his/her demand. Here we present the main categories of other VRP
variants in more detail.

• The VRP with Time Windows (VRPTW): imposes a time interval
(“time window”) on the delivery of each customer’s request. Two
further categories can be identified: the VRP with soft time windows

15



(VRPSTW) Russell and Urban (2008) in which violating the time
windows is allowed but associated with a penalty, and the VRP with
hard time windows (VRPHTW) Miranda and Conceição (2016) in
which the time windows must be respected.

• The Multi-Period VRP Problem (MPVRP) (see Campbell and Wil-
son (2014)): in this variant deliveries are scheduled within a planning
period, with each customer requiring one or more visits during this
period. The service days are known and the frequency of customer
visits is predetermined.

• The Multi-Compartment VRP, and the Multi-Commodity VRP: con-
centrate on delivering different types of commodities to the customer,
by either using a single vehicle, or by splitting them to several vehicles,
thus requiring multiple visits to the same customer.

• The Pickup and Delivery Problem (PDP) Berbeglia et al. (2007); Par-
ragh et al. (2008): This problem involves picking up and delivering
customers’ requests from certain points of pick up and delivery, and
this must be achieved by the same vehicle. Other variants of VRP
have originated from the PDP such as: the VRP with backhauls, the
VRP with simultaneous pick up and delivery, the VRP with mixed
pick up and delivery, and dial a ride.

• The Split Deliveries VRP (SDVRP) (Dror and Trudeau, 1989): in
the SDVRP, the constraint that each customer is visited by only one
vehicle is relaxed, and thus customers’ demand can be split between
several vehicles for delivery.

• The Multi Depot VRP (MDVRP) Montoya-Torres et al. (2015): In
this variant, it is assumed that there are multiple depots from which
customers can be served.

• The Multiple Trips Vehicle Routing Problem (MTVRP) Cattaruzza
et al. (2014): This problem assumes that trucks can visit the depot
more than once in the time horizon for stock replenishment.

• The Open VRP (OVRP): in this variant, it is not necessarily the case
that the vehicles end their journey at the depot location.

• The Stochastic VRP (SVRP): some elements of the problem are stochas-
tic and unpredictable such as the number of customers, their requests,
or their serving time.
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• The Workforce Routing and Scheduling Problem (WRSP): this prob-
lem can be categorised as a general VRP and is concerned with the
routing of staff from their home location to their working sites. A
similar problem to the WRSP, is the Service Technician Routing and
Scheduling Problem (STRSP), which involves designing the least cost
routes for vehicles carrying a number of service technicians.

6. The Urban Transit Network Design Problem (UTNDP)

The problem of designing urban transit routes and schedules for a public
transport infrastructure with known demand following practical constraints
is referred to as the Urban Transit Network Design Problem (UTNDP).
The UTNDP is a combinatorial optimisation problem that is NP-hard and
is characterised by its computational intractability. For this reason, research
has attempted over the years to develop numerous algorithms for solving the
problem efficiently in a short computational times.

The UTNDP can be considered a very special variant of VRP problems,
where there is no central depot from which vehicles start and terminate
their journeys. Rather, passengers are picked up and dropped off at several
locations along the routes, for example at bus stops. The main focus as in
the general VRP is to reduce the total travelled distance encountered by the
passengers as well as the expenditure of the operators.

The UTNDP is an important practical problem, that has a high impact
on the development of the current urban societies. Having a robust infras-
tructure for public transport is a reflection of urbanisation, as well as being
an essential service for individuals. Moreover, it contributes considerably
on reducing the dependability on private cars, which recently resulted in
many social, and environmental problems, causing high rates of accidents,
traffic, and pollution. Due to the challenging nature, and the important
social and practical impact of the problem, researchers tackled it as early as
1925 and several solution approaches, and algorithms have been applied and
new studies continue to compete to find state of the art results and efficient
algorithms for the optimal design of public transport routes.

The two main components of the UTNDP problem are: the Urban Tran-
sit Routing Problem (UTRP) and the Urban Transit Scheduling Problem
(UTSP). Generally, the UTRP deals with the design of efficient transit
routes on a given transportation network with known pick-up/drop-off loca-
tions, while the UTSP deals with the development of schedules and timeta-
bles for the vehicles travelling along the designed routes to serve passengers
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between their origin and destination locations. These two problems are usu-
ally solved sequentially, as the routes must be designed first before setting
the schedules and timetables. The UTNDP has been classified by Ceder
and Wilson (1986) into five main stages that together contribute in the de-
sign of a public transit system: (1) network design (2) frequency setting
(3) timetable development (4) vehicle scheduling (5) driver scheduling. The
first stage, the transit routes design, is the most important, and on which
the other stages are based.

The UTNDP is a very difficult and heavily constrained optimisation
problem, due to its composition of several sub-problems and design stages
as mentioned in the above paragraph, that are all NP-hard in nature and
require to search for optimal solutions for an extremely large solution space.
The UTNDP also deals with a complete set of decision-making processes in
transportation systems including strategic, tactical, and operational decision
making Farahani et al. (2013). Moreover, the transit systems of transporta-
tion modes are characterised by their stochastic nature and complexity, mak-
ing the UTNDP extremely difficult, requiring simplifications to be tractable
for modelling and solving by optimisation algorithms.

In fact, most studies focus on tackling either one of the design stages,
or commonly the first two design stages are combined together in a prob-
lem named “route design and frequency setting”. Moreover, this problem is
inherently multi-objective consisting of several criteria that should be opti-
mised simultaneously. Mainly, the objectives that most studies have focused
on are: the passenger costs represented by the total travel time, the per-
centage of transfers, and the operator costs represented by the total covered
distance, or the fleet size. Transportation companies try to reduce their
costs which can affect the service provided to the passengers, making the
objectives of the problem conflicting in nature. Some of the factors that
affect the operator costs are the transit vehicle size, distance travelled, vehi-
cle operation hours for specific routes configuration, and the fleet size. On
the other hand, the passengers require a transportation service with rapid
travel times, less transfers, and frequent service. Other stakeholders who
are involved in the development of a transit system are national and local
government, local businesses, and taxpayers. All these stakeholders have
their own benefit from the designed system and evaluate its efficiency with
respect to their own perception and view. In a following section, we focus
on the description of the UTRP, defining the problem mathematically and
showing its deep-rooted complexity.
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6.1. Difficulties of the UTNDP

Over years of research, the UTNDP has been identified as an extremely
difficult and challenging problem, even for the most efficient optimisation
algorithms. The majority of the reasons for the UTNDP complexity have
been identified in Fan (2009); John (2016) doctoral theses:

• The problem is NP-hard, which means that the difficulty in finding a
solution increases exponentially with the size of the problem.

• Although many models have been presented in the literature for solv-
ing the UTNDP, these models differ hugely in their description of the
problem, constraints, and the objective functions considered. There-
fore, there is no standardised accepted model that can be adopted as
a reference.

• The constraints of the problem can be difficult to model and to satisfy,
making the search and check of feasible solutions a complex process
that involves considerable computation. .

• Different parts of the solution heavily depend on each other, and there-
fore it is difficult to evaluate a single route in isolation from the other
routes in the route set. The quality of the route set is determined by
all the routes belonging to it, and should be evaluated as a whole.

• The problem involves multiple conflicting targets making the problem
inherently multi-objective. For example, reducing the service costs,
and maximising the passengers benefit and welfare are targets that
compete with each other.

• The collection of the input data in order to efficiently design a route
set that reflects the real nature of the transport system is extremely
difficult. Demand figures change throughout the day, and the pas-
sengers’ behaviours are stochastic, and therefore finding an accurate
measures is challenging. The consequence of this is that the design of
routes can be totally wrong if the input data is poor.

6.2. UTNDP and VRP

The UTNDP falls into the broad category of VRP problems, although
there are many key differences between the UTNDP and the various delivery
problems discussed earlier. Generally, most VRPs involve multiple trips that
originate and terminate at a depot location, and each route (vehicle) services
a number of customers with pre-determined demands (requests), and a time
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window for the delivery/pick-up time. In the route design problem of the
UTNDP, a set of routes is designed to pick-up and drop-off passengers from
their origin to destination points, following a fixed schedule. The passenger
cannot determine a preferred time window, but rather waits at the bus stop
for the next vehicle to arrive. The VRP problems are solved on a daily basis
to serve the varying demand of the customers, while the UTRP aims to
design routes for the long term strategic planning with estimated demand
figures. The general objectives in both problems are common, aiming to
reduce the total costs associated with the total travelled distance and raising
the customers’ (passengers) satisfaction.

The closest variant to the UTRP amongst the other variants of VRP
is the dial a ride problem (DARP). The DARP deals with the transporta-
tion of customers from their selected origin point to multiple destination
points, using vehicles that are shared by a number of customers with differ-
ent requests. However, there are several differences that distinguish the two
problems. In the DARP, the vehicles are assigned on the basis of customers’
requests and accordingly the routes are determined, while in the UTRP the
routes are pre-determined and fixed, and the passengers cannot request their
pick-up vehicle or preferred time for pick-up and arrival, instead the timeta-
bles are followed. In other words, in the DARP, customers’ preferences and
choices are taken into account, in contrast to the UTRP where passengers
make selections from available routes and schedules according to personal
preferences. The DARP is also planned on day to day bases, accommo-
dating to the new received requests, and therefore the demand is variable.
In the UTRP, It is assumed that the demand levels remain the same with
insignificant variance during the day. The DARP is on a smaller scale and
is a more flexible application compared to the UTRP, which is a long term
planning application that is performed on a larger scale. This makes the
UTRP a unique VRP variant that requires specialised algorithms to solve.

7. Methods for Solving Combinatorial Optimisation Problems

Methodologies for solving COPs fall into one of the following categories:
mathematical modelling, heuristics, and meta-heuristics (see figure 5). In
the following sections we will be discussing each of these categories in further
detail.

7.1. Exact Mathematical Approaches

Mathematical approaches rely on mathematical formulations for the de-
sign of the objective function and its constraints. One of the best known
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Figure 5: Solution methodologies for CO problems

mathematical programming methods is linear programming, where the ob-
jective function and the constraints are given as linear functions. When
some or all of the decision variables are restricted to integers, the mathe-
matical optimisation is called Integer Linear Programming (ILP), and if the
decision variables are a mix of discrete and continuous, it is called a Mixed
Integer Linear Programming (MILP). Other classical mathematical algorith-
mic frameworks include Dynamic Programming Bellman (1952), and Branch
and Bound (B&B) Lawler and Wood (1966). Mathematical programming
approaches are useful when optimal solutions are to be found, and they can
tackle COPs that are solvable in polynomial time as well as large size COPS
in some cases.

Nevertheless, one of their main drawbacks is that for many COPs, they
fail to scale to large size instances and cannot solve them in a finite amount
of time. Chakroborty (2003) stated that transportation engineering con-
tains a multitude of optimisation problems that pose an extreme difficulty
on traditional mathematical approaches, and one of such problems is the
UTNDP. For these problems, simplifications should be introduced to the
size and complexity of the model in order to apply the mathematical ap-
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proaches, and for this reason their application became less favourable. In
such cases, approximation methods can handle the practical size and the
complexity of the problem instances.

7.2. Heuristic Methods

As a result of the failure of mathematical approaches in solving large
scale versions of CO problems, heuristic methods have grown in popularity
with the advance in computing technology, and have been applied since then
in many studies.

Heuristic methods are used to approach an intractable optimisation prob-
lem by finding sub-optimal solutions in a polynomial time. Pearl (1984) de-
fined heuristics as an intelligent search strategy for computer problem solv-
ing. In optimisation problems, a heuristic is defined as a “rule of thumb” to
guide the computational search for finding a solution. Although heuristics
are designed to speed up the search process, they cannot guarantee to find
an optimal solution unlike mathematical methods. However, in some NP-
hard problems such as VRPs, it is a better choice to give up the search for
optimal solutions in favour for improvements in run-time, or to find solutions
for larger instances.

Heuristic methods are categorised according to how they explore the
search space into construction and improvement heuristics. A construction
heuristic attempts to build an optimal solution from scratch, while an im-
provement heuristic starts from a candidate solution and iteratively moves
from one solution to another in its neighbourhood (i.e., a neighboured so-
lution is generated by making small changes in the candidate solution).
Heuristic methods are characterised as problem-dependent, which means
they are specific to the problem they are trying to solve. This has moti-
vated researchers to develop domain-independent and more generally appli-
cable methods such as meta-heuristics and hyper-heuristics.

7.3. Meta-heuristics

The last decades have witnessed a great growth in computing power,
and as a result meta-heuristic approaches have emerged as popular tech-
niques to solve hard combinatorial problems. Meta-heuristics were defined
by Sörensen and Glover (2013): “A meta-heuristic is a high level problem-
independent algorithmic framework that provides a set of guidelines or
strategies to develop heuristic optimisation algorithms”. Sörensen and Glover
(2013) also used the term meta-heuristic to define “ a problem-specific imple-
mentation of a heuristic optimisation algorithm according to the guidelines
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expressed in a meta-heuristic framework”. Due to the adaptability of meta-
heuristics to different problems with complex structures, and their efficient
computational performance and speed, research shifted towards using them
for solving NP-hard problems. Meta-heuristic methods such as genetic algo-
rithms, tabu search, simulated annealing, and particle swarm optimisation
have played an important role in developing the research of CO and have
outperformed previously applied heuristic approaches.

Meta-heuristics can be classified into two main broad categories: pop-
ulation based and single solution based. The single solution based meta-
heuristics employ a single solution during the search, while the population
based maintain a pool of candidate solutions (population). Some hybrid al-
gorithms combine the two approaches into a single method. Here we demon-
strate some of the well-known classes of meta-heuristic algorithms that are
commonly used in solving VRPs and the UTNDP.

7.3.1. Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a class of population based search
methodologies, which are inspired by the Darwinian theory of evolution.
Each iteration of EA corresponds to a generation, through which a num-
ber of solutions in the population named individuals can reproduce. New
solutions are created (i.e., offspring) by the recombination of two individ-
uals (i.e, parent solutions) which are selected from the population using a
selection strategy, and mutation is then performed on the new individuals
to encourage diversity. The fitness of the new solutions are evaluated, and a
selection strategy is applied to determine which individuals to remain in the
next generation. The main operations of a generic EA are demonstrated by
algorithm 1. Some of the well-known algorithms grouped under the category
of EAs are: Genetic Algorithms (GAs), Evolution Strategies (ES), Evolu-
tionary Programming (EP), and Genetic Programming (GP) Boussäıd et al.
(2013).

Genetic Algorithms (GAs) are one of the most well known and mostly
used algorithms amongst EAs that use the concepts of natural evolution
and genetics for problem solving. Generally, a GA consists of a similar
set of functions as the generic EA, but their implementation can different
substantially according to the problem. The main components of a general
GA are: solution representation (chromosomes), selection strategy, type of
crossover, and mutation operators.

Until now, GAs are the dominant approach for solving the UTNDP, and
several variants and approaches were developed and proved to find com-
petitive results. For more in depth overview on GA methods and their
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application reader can refer to Beasley et al. (1993)

Algorithm 2: Evolutionary Algorithm

1 CreateInitialSolutions() // Initialise the population ;
2 Evaluate()// Evaluate each individual in the population;
3 repeat
4 SelectParents()// Select individuals from the population for mating;
5 Crossover() // apply cross over operator with a probability ;
6 Mutate() // apply mutation operator with a given probability ;
7 Evaluate()// Evaluate new individuals;
8 ReplaceSolutions() // Generate new population of solutions ;

9 until noGenerations;

7.3.2. Swarm Intelligence

Swarm Intelligence (SI) is an artificial intelligence discipline concerned
with the design of intelligent multi agent systems by taking inspiration from
the collective behaviour of social insects such as ants and bees Blum and
Merkle (2008). The idea is that multiple smart agents can interact locally
to achieve a common complex goal without the need for a centralised con-
trol system. Every individual uses simple rules to govern their actions, and
the swarm reaches a desirable goal by the interaction of the entire group.
Currently, the most well known swarm intelligent algorithms widely used in
optimisation problems are Ant Colony Optimisation (ACO) Dorigo et al.
(1996) which mimics the way ants search food in nature, Bee Colony Op-
timisation (BCO) Lucic and Teodorovic (2001) inspired by the movement
of bees during nectar collection process, and Particle Swarm Optimisation
(PSO).

7.3.3. Single Solution Based Meta-heuristics

Single solution based meta-heuristics share the advantage of their ability
to intensify the search on local regions in the search space, focusing on a
single solution that is iteratively improved. Moreover, they are generally
computationally faster by eliminating the need to maintain and evaluate
individuals in the population. Some of the commonly applied single-point
based meta-heuristics include: Local search algorithms (Hill Climbing (HC),
Iterated Local Search (ILS)), Simulated Annealing (SA), Tabu Search (TS),
and Greedy Randomised Adaptive Search Procedure (GRASP).

Local search algorithms Aarts and Lenstra (2003) is a widely used set
of algorithms that are based on the idea of examining the search space by
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initialising a solution and iteratively move to other neighbouring solutions.
The neighbourhood of a solution are the set of solutions that can be gener-
ated by making changes (usually small) on the candidate solution, and the
decision at each step of the search is based only on information about the
local neighbourhood. The Hill Climbing algorithm (HC) is one of the well
known local search methods which gradually improves a candidate solution
by selecting the best neighbour based on an evaluation function. However
this method can easily get stuck in a local optimum, a state where no more
better neighbouring solutions can be found. Iterated Local Search (ILS)
Lourenço et al. (2019) improves the hill climbing local search by avoiding
the easy entrapment in a local region in the search. It performs repeated
iterations of perturbation and local search on a local minimum solution gen-
erated by the local search until satisfying a termination condition. This way,
ILS maintains the balance between the exploration an exploitation processes
by using perturbation and local search operators respectively.

Simulated Annealing (SA) is a probabilistic meta-heuristic framework
that imitates the process of annealing in solids. At each decision point a
new solution is generated, and it is accepted if its better than the previous
solution. Worsening solutions are occasionally accepted to prevent entrap-
ment in local optima. A worsening solution is accepted with a probability

equals P = e
∆
T , where ∆ is the solution quality change, and T is the method

parameter, called temperature which regulates the probability to accept so-
lutions with higher objective value (cost). Generally speaking, the search
starts with a high temperature, and then according to the cooling schedule,
the temperature decreases gradually throughout the search process.

Tabu search is a meta-heuristic introduced by Glover (1986) in 1986.
The idea of the algorithm is that it prohibits the recent moves in the search
by maintaining a memory structure named a tabu list that prevents the
repetition of the recently visited solutions. This can help the search in
escaping the local optima.

GRASP Feo and Resende (1995) is an iterative meta-heuristic framework
in which each iteration is made up of two phases: construction phase and
local search phase. In the construction phase a solution is built, and repaired
if it is not feasible, and a local search procedure is then applied to improve
this solution until a local optima is reached, while keeping the best solution.
Repeating the two phases with a new solution constructed at each iteration
enhances the local search diversification.
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8. Solving the Urban Transit Routing Problem

There is a considerable amount of research published on transit plan-
ning, due to its practical importance. Some researchers focused on a sin-
gle aspect of transit planning, while others tried to solve multiple aspects
simultaneously. Solution methodologies, problem models, and objectives
differ substantially between different studies, making it difficult for any re-
searcher to effectively compare their algorithm’s performance with others.
We try in this section to survey the different studies and methodologies that
attempted to design algorithms for the problem of the optimal design of
routes in urban transit systems on benchmark and on larger scale instances.
We show the advance in research over the years, and how the emergence of
meta-heuristics has helped significantly in the design of powerful algorithms
that can handle such a computationally complex problem.

8.1. Analytical and Exact Mathematical Approaches

Analytical and mathematical methods were the first approaches for solv-
ing the UTRP, although they tend to focus on specific aspects of the prob-
lem using simplified network structures. Analytical methods attempt to
find route attributes for a given network such as routes length and spacing,
and develop relationships between the transportation network components
rather than designing the actual routes. The disadvantages of analytical
models have been pointed out by researchers, where Ceder (2016) mentioned
that these methods are suitable only when approximate values for the design
parameters are needed to assess policies and not for a complete design. Tom
and Mohan (2003) stated that these methods are of a theoretical interest
only. One of the early studies that applied analytical methods in the design
of bus transit services is Holroyd (1967), where they attempted the problem
of finding the optimum positions of bus routes and the optimum frequency
on these routes in an urban area. Their objectives are to minimise the sum
of time costs associated with bus journeys, and the cost of providing a bus
service. The problem is studied theoretically in a large uniform area with
the bus routes forming a square grid. Byrne (1975) built a model of a tran-
sit system in polar coordinates and radial transit lines with the purpose of
finding line positions and headways that minimise the user and the transit
agency costs. This is achieved in relation to a population density function,
where the author stated that determining transit line locations must be done
in relation to the population density in the region. In Byrne (1976) different
line speeds are introduced to a similar model under similar objectives. The
study concluded that low speed lines should be terminated in some cases if
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they are adjacent to a high speed line. Examples of other studies that ex-
tensively analysed the UTRP under such methods are Chang and Schonfeld
(1991, 1993); Chien and Schonfeld (1997).

Mathematical programming approaches were attempted in the UTRP as
early as 1970. Van Oudheusden et al. (1987) used two well known location-
allocation mathematical programming problems: the set Covering Problem
(SCP), and the Simple Plant Location Problem (SPLP) for the design of
bus network routes. It was found that the SCP is more effective when fixed
demand is assumed, while SPLP is more powerful under the more realistic
assumption of variable demand. van Nes et al. (1988) combined heuristic and
mathematical methods to design a model suitable for redesigning parts of a
transport network, or the design of a complete network and the assignment of
the frequencies. The designed model uses a single optimisation process that
can be used for several design methods. It provided good results with test
networks and actual data. Bussieck (1998) presented in his doctoral thesis
a mathematical programming approach for the problem of line planning
in a public rail transport system. The study describes an approach based
on Integer Linear Programming (ILP) which provides an effective tool for
modeling line optimisation problems focusing on a specific approach for line
planning that aims to maximise the number of direct travellers. A cost
optimal line planning problem is also introduced and solved as an integer
nonlinear program. The ideas in his research can be generalised to other
modes of transportation networks.

Wan and Lo (2003) implemented a mixed integer model for solving the
route design problem and the frequency determination of the lines simul-
taneously. The problem is solved as a mixed integer formulation with the
objective of minimising the sum of operating costs for all transit lines. The
model was tested on a small example network of 10 nodes, and the final so-
lution consisted of three routes. The authors stated that their work provides
a good starting point for extending the model to consider both user and op-
erator perspectives. They also mentioned that devising heuristic methods is
crucial for application in practical size networks.

Guan et al. (2006) dealt with the problem of simultaneous transit line
configuration and passenger line assignment. The study focused on large
city railways and the tests are carried out in Hong Kong city. Using a lin-
ear binary integer program that can be solved in any integer system such
as a standard branch and bound method, the work attempts to model the
transit line planning and the passenger transfer process. The objective is to
minimise the total length of transit lines and the total length travelled by
passengers, under constraints of routes length, maximum number of transfers
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and capacity. Several simplifications were introduced to reduce the compu-
tational burden on the binary integer program. The authors concluded the
study by pointing out the need for more efficient algorithms for solving large
size networks, and suggested meta-heuristics such as Simulated Annealing,
Tabu Search, and Genetic Algorithms for this purpose.

Barra et al. (2007) proposed a constraint satisfaction model to the solve
the transit network design problem which was tested on a Constraint Pro-
gramming (CP) system. They considered several service parameters in their
model including minimum frequency, maximum transfers, and routes lim-
its. The method is designed to be interactive, allowing an expert to use
their experience by changing the design parameters to enhance the results.
Their objectives included passenger satisfaction, and budget constraints rep-
resented by the total travelled distance, or the necessary fleet to operate the
designed network. The model was tested on small instances derived from
Mandl’s network, and they stated that the CP package is unable to process
large instances.

8.2. Heuristic Methods

Probably, Patz (1925) was the first to tackle the route design problem
using heuristics. He developed an iterative procedure to generate network
lines (routes) based on penalties. Initially the network contains lines between
each origin- destination pair with associated penalties calculated from the
number of passengers who need transfers to complete their journey. The
network lines are iteratively deleted based on these penalties. His approach
was applied on a small ten node instance, but was not extensible.

Another early attempt to apply heuristic approaches was the study by
Lampkin and Saalmans (1967), who solved a case of a municipal bus problem
by tackling it in four stages: reorganising the routes structure, determining
frequencies on the routes, designing bus schedules and setting the timetables.
A heuristic procedure is developed to design the network by building an
initial route skeleton, and nodes are added one by one to this skeleton in
later steps. Frequencies are then allocated to the routes so as to maximise
the passenger service. A linear programming model is then used to assign
buses to journeys.

Dubois et al. (1979) studied the problem of modifying a transportation
network to fit with the existing demand. A set of heuristic procedures were
applied to the re-planning of bus routes in some medium size towns net-
works. They mentioned that heuristics are the only viable methods when
the network size is no longer small, and proposed three greedy heuristic
procedures for minimising the travel time and maximising accessibility. His
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methods has been tested in the design of transport networks in ten towns in
France. Sonntag (1977) solved the transit network design on a rail system
using a heuristic approach. In his work, an initial route set is created be-
tween every pair of stops and the initial routes are iteratively improved and
infeasible routes are removed to find the best shortest paths with reasonable
travel times and least number of transfers for passengers.

Following that, Mandl (1979, 1980) published his work, which is consid-
ered one of the most fundamental studies in the UTNDP, that assisted future
research in understanding the principles of applying heuristics to the route
design problem. His pioneering work produced the Swiss 15 node instance,
which has become a defacto benchmark used by most researchers. The pro-
cess consists of two phases: route generation, and route improvement. In
the route generation phase, a shortest path algorithm is applied to compute
the shortest paths for every vertex pair. These routes are then added in the
route set by selecting the routes that has the most number of nodes, while
the unseen nodes are added iteratively to the routes in the most convenient
way. In the second phase, a heuristic algorithm is proposed that improves
a given transportation network with the average transportation cost as an
objective. This heuristic algorithm idea is to search for new routes, so that
the entire route set remains feasible, and the average transportation cost is
improved. If a new set of routes is found that is better than the old one, it is
accepted and the search procedure continues until no further improvement
is achieved. The improvements on the route set that were considered are:

• Create new routes by exchanging parts of routes at an intersection
point.

• Add a node to a route if this node is close the route and the trans-
portation demand between this node and the other nodes in the route
is high.

• Reduce the length of a route by excluding nodes that are served by
other routes, and the transportation demand between this node and
the other nodes in the route is low.

Ceder and Wilson (1986) identified the sequence of operations involved
in the bus system design and planning: network design, frequencies setting,
timetables development, bus scheduling, and driver scheduling. They also
proposed a two level approach, stating that it is desirable that the design
process incorporates alternative levels of complexity, due to the overall com-
plexity of the bus system design and the vast number of involved factors.
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The first level of their model tackled the design of routes considering only the
passenger perspective, while the second level determines the bus schedules
and timetables taking both passenger and operator objectives into account.
They also presented a route construction algorithm which produces an out-
put that can be fed into both levels and also produces a set of feasible routes
and their directness measures. Despite the sophisticated ideas presented in
their work, its application was demonstrated on a very simple example of a
five nodes network which does not sufficiently test the effectiveness of the
proposed model.

Baaj and Mahmassani (1991, 1995) also developed a three stages heuris-
tic approach based on artificial intelligence tools composed of a route gener-
ation algorithm guided by the passengers demand, followed by an analysis
procedure to compute a number of performance measures for the initially
generated route set. Finally a route improvement algorithm utilises the com-
puted measures to produce feasible, improved route sets. Lee and Vuchic
(2005) developed an iterative heuristic procedure to solve the network de-
sign and frequency setting problem with variable transit demand under a
given fixed total demand. The objective was to decrease the total travel
time through an improvement procedure on an initially generated network
utilising the shortest paths. A transit assignment procedure was also applied
to concentrate demand on certain routes eliminating less efficient routes.

Some heuristic methods are based on heuristic construction procedures,
which attempt to build optimal public transport route sets from scratch. An
example of such method is the heuristic algorithm developed by Simonis in
1981 (Simonis, 1981). This method starts by generating a route using the
shortest path between the highest density demand points and then deletes
the demand satisfied by this route. The process iterates to the next highest
demand points until a maximal number of routes is reached.

8.3. Meta-heuristic Approaches

8.3.1. Genetic Algorithms

Genetic algorithms (GAs) have been a very popular choice for solving
the UTNDP and its components, despite their requirement for high com-
putational power an their long run times compared with other methods.
Nevertheless, recent research still focuses on their implementation and com-
petitive results are acquired by this method.

Pattnaik et al. (1998a) was one of the first attempts to apply GAs to the
transit route network design problem. They attempted to find transit routes
and their associated frequencies with the objective of reducing the overall
system cost (i.e. user and operator). They designed a two phase model: the
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first phase generates candidate solutions guided by the demand matrix and
the route set constraints, and the second phase applies a GA to improve the
quality of the route sets. They experimented with both fixed-length and
variable-length string encoding schemes. Similar work was developed later
by Tom and Mohan (2003) using a simultaneous route and frequency coded
model.

Chakroborty and Wivedi (2002) proposed a three stage approach: an ini-
tial generation procedure using heuristic methods, a modification procedure
based on a GA, and finally an evaluation procedure where they used a fit-
ness function weighting three components: passengers in-vehicle and transfer
times, percentage of demand satisfied with zero, one, and two transfers, and
the percentage of unsatisfied demand. They applied their proposed method
to Mandl’s benchmark and could find better results compared with other
methods at that time. In Chakroborty (2003), Chakroborty addressed both
transit route design and scheduling problems sequentially by applying the
same GA approach they used in their previous work on Mandl’s benchmark.
The work also focused on showing the effectiveness of GA approaches on
this problem compared to the previous traditional approaches.

Fan and Machemehl (2006a), used a genetic algorithm approach to ex-
amine the underlying characteristics of an optimal bus transit network with
variable transit demand. The framework of the proposed solution is con-
structed of three main components; an initial candidate route set generation
procedure, a network analysis procedure that decides transit demand ma-
trix, assigns transit trips and determines service frequencies, and finally a
genetic algorithm procedure that selects a route set from the huge solution
space.

In Szeto and Wu (2011) a bus network design problem for the town of Tin
shui wai in Hongkong was solved, with the aim of improving bus services by
reducing transfers, and passengers travel time. They proposed an integrated
solution method to solve the route design problem and frequency setting
problem simultaneously, and used the real world instance of the town. The
authors used a GA to solve the network design problem and incorporated
it with a frequency setting heuristic based on neighbourhood search to add
frequencies to the routes.

Cipriani et al. (2012) addressed the transit network design with elastic
demand to define lines, frequencies, and vehicle sizes with aim of reducing
operator costs, waiting time, and unsatisfied demand. The authors propose
a solution approach consisting of two stages: (i) implementing a heuristic
algorithm to generate potential lines and their frequencies and (ii) a GA
that recombines lines to generate a new population of individuals while the

31



fitness function evaluates them using a probabilistic modal split model which
determines the mode choice behaviour of users, and a hyper-path transit
assignment model that determines the route choice behaviour of users.

Mumford (2013) developed several intelligent genetic operators within an
evolutionary bi-objective framework, with the joint goals of minimising pas-
sengers average travel time, and operator’s cost. A heuristic-based method
was implemented to seed the population with feasible route sets, in addi-
tion to a new crossover operator, and mutation operators to add and delete
groups of nodes to the routes. This work proposed four new benchmark
instances which were made public for researchers.

Chew et al. (2013) also approached the UTRP as a bi-objective problem.
In their proposed algorithm the initial population is created with the aid of
Floyd’s algorithm for all pairs shortest paths. Their experiments were tested
on Mandl’s instance and compared with the work of Mumford (2013) and
Fan and Mumford (2010), where they reported improved results.

The work in John et al. (2014) is built upon the work of Mumford (2013)
using an NSGA-II bi-objective framework. They developed a new power-
ful heuristic construction method for candidate route sets generation and
implemented eight new operators to perform replace, exchange, and merge
operations. Their approach found improved results from both the passen-
ger and the operator perspectives. The method was later implemented in
a parallel model by Cooper et al. (2014) to improve its efficiency in terms
of run times. In Heyken Soares et al. (2019) the algorithm of John et al.
(2014) was adjusted to solve a version of the UTRP with terminal nodes at
the routes ends, and additional mutation operators were introduced. The
algorithm was used to provide preliminary results for a new data set pre-
senting the extended urban area of Nottingham city, which was generated
from real-world data available in public sources.

Nayeem et al. (2014) presented a genetic algorithm with an elitism ap-
proach. They generated the initial population using a greedy algorithm, and
created the route set through choosing the pair of nodes with the highest
demand and finding the shortest path between them. They also improved
the genetic algorithm proposed in their previous work by allowing the popu-
lation size to increase through copying high quality individuals from current
generation to the next. The approach outperformed the known state-of-
the art. However their objective evaluation focused only on the passenger
perspective.

Arbex and da Cunha (2015) addressed the network design problem and
the frequency setting of the routes simultaneously and proposed an Alterna-
tive Objective Genetic Algorithm (AOGA) to efficiently solve the problem.
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Their approach consisted of alternating the focus of the optimisation to one
of the objectives at each generation, and they incorporated both passenger
objective as the sum of in-vehicle travel times, transfer and waiting times
and the operator objective as the total operating fleet in the network. They
applied their method on Mandl’s instance with routes sizes 4, 6, and 8 and
proved that their proposed GA is competitive with the current published
results.

Most recently, Yang and Jiang (2020) implemented a novel initial route
set generation algorithm, and a route set size alternating heuristic that
changes the number of routes in a solution, and embeds them into a NS-
GAII framework to provide an approximate Pareto front in terms of the
passenger and operator costs. Their initial generation procedure assumes
that maximising the demand satisfied directly is a key component to gener-
ate an efficient initial route set. They tested their algorithms on Mandl and
Mumford benchmark instances, and their results on Mumford data set out-
performed all the current available results including the recently developed
hyper-heuristic approach in Ahmed et al. (2019b).

Other studies along with those listed above that applied GA to the route
design problem/route design and frequency determination are given in table
1.

8.3.2. Swarm Intelligence

Various Swarm Intelligence algorithms have been applied to solve the
UTRP and proved to be competitive and efficient compared to GA imple-
mentations. Yu et al. (2012) developed a method that aims to maximise
demand density on routes by dividing the transit network design process
into three stages: First an empty network is built, and skeleton routes are
added such as to maximise direct traveller density until constraints such
as route length, demand, and directness constraints are exceeded. After
this, main routes are laid into the transit network according to the maxi-
mum traveller density. Last, branch routes are laid on the transit network
which includes skeleton and main routes. Their model aims to maximise
the demand density of each route which is the transit demand divided by
the length of the route, and the transit demand includes both direct trips
and transfers. The ACO algorithm is applied to determine the design of the
skeleton, main and branch routes while adhering to the problem constraints.
Two test cases were used in this work, a simple network which has six nodes
and nine links, and data from Dalian city in China, and the results showed
that the optimised transit network can be improved with respect to trans-
fers. Poorzahedy and Rouhani (2007) tackled the route design problem for
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bus networks to minimise the travel time of the users, while maintaining
the fleet size requirements. The ACO algorithm was applied to solve their
model on the network of Sioux Falls, as well as a real scale network repre-
senting the city of Mashhad in Iran. Their developed Ant System works on a
decision graph instead of the bus network itself, and their method has been
calibrated to both network examples where they demonstrate its efficiency
in each.

Nikolić and Teodorović (2013) developed a model for solving the network
design problem based on Bee Colony Optimisation (BCO), with the objec-
tives of maximising the number of satisfied passengers, minimising transfers
and minimising the total travel times of all served passengers. They pro-
posed a simple greedy algorithm to generate the initial route set which aims
to increase the number of direct trips by finding the nodes with the high-
est direct service demand, and calculating the shortest path between these
nodes. These shortest paths are then added to the initial route set until
the desirable number of routes in the route set is reached. They proposed
two types of artificial bees to perform modifications on the solution. The
algorithm was applied to Mandl’s network and compared to the current best
known solutions, where new best solutions were achieved for Mandl’s prob-
lem versions with 4, 6, 7, and 8 routes. In Nikolić and Teodorović (2014) the
authors extended their work to simultaneously determine the frequencies on
the designed routes.

Kechagiopoulos and Beligiannis (2014) proposed a PSO algorithm as a
first attempt to apply it for solving the UTRP. Their model focused on the
solution representation in terms of the route network and the evaluation
procedure which evaluates two objectives: the passenger and the operator
costs. They compared the performance of their method with other seven
known methods in the literature and found that their approach is compet-
itive on Mandl’s instance with 4, 6, 7, and 8 routes. Recently, Jha et al.
(2019) implemented a Multi-objective particle swarm optimisation with mul-
tiple search strategies (MMOPSO) to solve the bus route design problem
and frequency setting. Their approach consisted of two stages: a route set
generation phase for the route design based on a GA implementation, and
the frequency setting phase which is solved as a multi-objective problem
by applying the MMOPSO framework to generate an approximate Pareto
set of solutions between passenger and operator costs. They applied their
methods to Mandl’s benchmark and compared it with the state-of-the-art in
the route design phase. They also justified the results of the second phase
by comparing them with NSGAII results. Buba and Lee (2019) proposed
a hybrid differential evolution algorithm with particle swarm optimisation
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(DE-PSO) to simultaneously optimise the routes’ configuration and their
associated frequencies with the objective of minimising the passenger and
operator costs. They conducted their experiments on Mandl’s benchmark
and a larger instance representing the Rivera city, Northern Uruguay. They
demonstrated that their algorithm is competitive with other approaches on
Mandl’s benchmark and their multi-objective framework finds a diverse set
of non-dominated solutions.

8.3.3. Single Solution based Meta-heuristics

Fan and Machemehl (2006b) used a SA algorithm to select the best
set of routes from a pool of candidate routes. A set of initial solutions
was created using Dijkstra’s shortest path algorithm and Yen’s k-shortest
path algorithm. Route frequencies were determined simultaneously using
a network analysis procedure to enable the computation of the required
performance measures. The objective was to minimise the sum of the user
costs, operator cost and unsatisfied demand. Three experimental networks
were tested and a GA was implemented for comparison with the results.
Their results proved the success of SA over GA in most cases of the tested
example networks. Fan and Mumford (2010) applied SA with a make-small-
change procedure as a neighbourhood operator. At first, a random route
set is generated and the make-small-change procedure applies one of three
moves: add a vertex to a randomly selected route, delete a vertex from the
route, or invert the route vertices order. The SA algorithm was applied and
compared to a simple hill climbing algorithm on Mandl’s benchmark, and
was able to find better results.

Fan and Machemehl (2008) used tabu search to solve the optimal bus
transit route design problem at the distribution node level. Their approach
consists of three stages: an initial candidate route set generation procedure
that generates all feasible sets of routes following the practical transit guide-
lines, a network analysis procedure that computes performance measures,
assigns transit trips and calculates frequencies, and a Tabu search proce-
dure that guides the candidate solution generation process. The objective
is a weighted sum of passenger and operator costs and unsatisfied demand.
Three different variants of Tabu algorithm were implemented and compared
to genetic algorithms to measure the performance quality of TS, and the
results showed clearly that it outperforms GAs. Mauttone and Urquhart
(2009) solved the UTRP as a multi-objective problem by applying a heuris-
tic based on the GRASP meta-heuristic. They proved that their method
produced better non-dominated solutions than the weighted sum method
with the same computational efforts for Mandl’s instance and another real
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test case. Kılıç and Gök (2014) reported the importance of good quality
initial solutions. They proposed a new initial route generation method that
employs the level of demand as guidance for their construction. They used
hill climbing and tabu search algorithms to test their method, and imple-
mented simple operators to modify route sets including add, delete and
swap.

8.4. UTRP Algorithms in Real-world Planning

Despite the huge amount of research on computer-based solutions for
solving the UTRP, there are few studies that have been actually used in
real-world planning processes (Walter, 2010). One example is the work by
Pacheco et al. (2009), who proposed a solution algorithm to a bus design
problem posed by the city council of Burgos city in Spain. The problem
consisted of designing bus routes and assigning buses to these routes to
optimise the service level such as to reduce the waiting times at bus stops
and the duration of trips. Two algorithms were implemented, a local search
and a tabu search and the two decision levels are optimised in alternating
steps. Their algorithm was able to perform better than the tools used in
planning by the city authorities. Another example is the study from 2012
by Cipriani et al. (2012) in cooperation with the mobility agency of Rome,
Italy. It included the application of a genetic algorithm on undirected graph
representing the street network of Rome. The results show improvements
over the existing bus route network in terms of waiting times, operator costs
and unsatisfied demand. According to the authors, the mobility agency
of Rome started implementing their results in 2012. Many other studies
compare their results against the real existing routes, showing that their
methods can lead to improvements over an existing service (e.g. (Ahmed
et al., 2019a; Bagloee and Ceder, 2011; Bielli et al., 2002; Heyken Soares
et al., 2019)). However, the results of these studies have not been verified
in real-world planning processes.

8.5. Limitations of Previous Research in the UTRP

There are some clear limitations with most previous approaches applied
to solve the UTRP. The lack of benchmark data for the problem is a seri-
ous issue, and many researchers implemented methods that are highly spe-
cific to given towns or cities. Furthermore, these instances are not publicly
available so we cannot judge the generality of the applied methods. Other
researchers who implemented and tested their methods on benchmark in-
stances used Mandl’s 15 node benchmark, which is a very small instance.
We cannot judge the performance of a method in terms of scalability based
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on such a small network. If we consider GA approaches in particular, with
a population of perhaps several hundred solutions to maintain, the run-time
for a road network of 100 vertices or above can be measured in days rather
than hours.

Moreover, we notice there is a wide range of objective functions and route
set evaluation methods used by different studies. The lack of standardised
methods for the evaluation and assessment of efficient route networks makes
the direct comparison among different studies not possible. Moreover, we
identified that GAs for solving the UTRP are the dominant algorithms in
the literature so far with the most competitive results despite their compu-
tational burden. The proposed single point based algorithmic solutions so
far do not compete with the results of the studies applying GAs. There is a
lack of computationally efficient algorithms with ability to scale and provide
high quality results at the same time. This has given the inspiration to test
the hyper-heuristic approach as a possible way forward and to address these
limitations.

9. Solution Methods for VRP Delivery Problems

In this section, we turn our attention to a different class of VRPS, con-
cerned mainly with the delivery of goods, rather than the transport of pas-
sengers such as in the UTRP. The term VRP was first introduced in (Dantzig
and Ramser, 1959) as a truck dispatching problem, where they modelled the
problem of how a homogeneous fleet of vehicles can serve oil demand of a
number of gas stations from a central hub, with a minimum travelling dis-
tance. This method was the first proposed heuristic approach for solving
a VRP, and was then generalised in (Clarke and Wright, 1964) to a linear
optimisation problem: how to serve a number of customers located around
a central depot, using a fleet of vehicles with varying capacities. These
two studies have put the fundamentals and the first formal definition of the
currently known Capaciated Vehicle Routing Problem (CVRP).

Due to the wide available literature on VRPs, we will limit the survey
here to the VRP variants related to the problem addressed in VeroLog solver
challenge 2019, and the reader can refer to published books and survey
papers for more literature and taxonomy of VRP studies Toth and Vigo
(2002); Laporte (1992); Campbell and Wilson (2014); Laporte (2009).

The CVRP problem has been tackled by several approaches and algo-
rithms including exact mathematical approaches, with branch-and-cut (BC)
algorithms (Augerat et al., 1995; Lysgaard et al., 2004), and algorithms
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based on the set partitioning formulation (Balinski and Quandt, 1964; Fuka-
sawa et al., 2006) being the most successful. One of the first attempts to
describe an exact BC algorithm for solving the CVRP is in Augerat et al.
(1995), where they successfully solved for the first time a CVRP instance
with 135 customers. Many studies also applied heuristic methods in the
CVRP, an example study is Fisher and Jaikumar (1981) who proposed a
heuristic that performs a generalised assignment procedure to assign cus-
tomers to vehicles with an objective function that approximates delivery
costs. Also, one of the earliest proposed heuristic algorithms for solving the
CVRP is the study of Clarke and Wright (1964), which is considered the
first study that proposed the CVRP as its current formulation. In terms
of meta-heuristics, Genetic Algorithms (GAs) have been widely applied to
the CVRP. In the work of Morgan and Mumford (2005) a hybrid GA was
developed to solve the CVRP by slightly perturbing the customers coordi-
nates to fool the the Clark and Wright simple heuristic and produce better
solutions than if the heuristic is applied to the original customer locations.
It is also common in many studies to combine local search techniques with
GAs to improve offspring Prins (2004); Mester and Bräysy (2007); Nagata
(2007); Nagata and Bräysy (2009).

For the version of CVRP with Time Windows (CVRPTW), exact meth-
ods have been successful for cases with up to 100 customers (Kolen et al.,
1987), and as a result heuristic and meta-heuristic methods have been pre-
ferred for solving instances of large scale. Examples of heuristic methods
applied to the VRPTW that use route construction and local search algo-
rithms can be found in (Solomon, 1987; Potvin and Rousseau, 1993; Russell,
1995), and other studies that applied meta-heuristics such as genetic algo-
rithms, ant colony, tabu search, and simulated annealing are in (Belhaiza
et al., 2014; Cheng andWang, 2009; Ding et al., 2012; Tavakkoli-Moghaddam
et al., 2011).

In Beltrami and Bodin (1974), the Periodic VRP (PVRP) problem was
addressed for the first time to solve a problem related to garbage collection
at industrial sites, and the nature of the demand required several visits to
each site in a duration of a week. The authors introduced two key heuris-
tics to solve the problem. A study by Rahimi-Vahed et al. (2013) applied a
path relinking algorithm to the multi-depot periodic vehicle routing prob-
lem by generating a reference set of elite solutions, and combining charac-
teristics from those solutions to find better solutions. The computational
results show that this method produces good results in both run-time and
solution quality. Archetti et al. (2015) presents three ways to formulate
the multi-period vehicle routing problem with time windows and solve the
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problem using a branch-and-cut algorithm. The algorithm was able to find
good solutions for small problems of ten orders, but was unsuccessful in
larger problems. Alonso et al. (2008) proposed a tabu search algorithm for
the periodic vehicle routing problem with multiple trips and accessibility
restrictions such that not every vehicle can visit every customer. When
tested on randomly generated test problems, it performed reasonably well
with regards to solution quality. Furthermore the computation time was
manageable for instances as large as 1000 orders. We refer the reader to
(Campbell and Wilson, 2014) for more literature on the PVRP.

Mirzaei and Wøhlk (2017) conducted research on two variants of the
multi-compartment VRP (MCVRP), one concentrates on split deliveries for
different commodities, and the second focuses on delivering all commodi-
ties by a single vehicle. They proposed a branch-and-price method and
compared the optimal costs of the two variants. The computational results
were presented for instances with up to 100 customers, and the algorithm
optimally solved instances with up to 50 customers and four commodities.
Heuristic examples such as (Cattaruzza et al., 2014) proposed an iterated
local search algorithm for solving the multi-commodity multi-trip VRP with
the objective of minimising the number of used vehicles. In (Gu et al., 2019)
the authors addressed the commodity constrained split delivery VRP, where
multiple commodities can be mixed in a single vehicle while satisfying the
capacity constraint and each customer can be visited more than once, but a
single commodity type should be delivered in one delivery. They proposed
a heuristic based on the adaptive large neighbourhood search (ALNS) and
tested their approach on benchmark instances. Among the meta-heuristic
methods applied to the MCVRP, genetic algorithms are the most common
so far. (Zhang and Chen, 2014) worked on a VRP encountered in the cold
supply chain logistics of the frozen food delivery. In their model, they as-
sociated a penalty cost for late delivery based on the types of products and
proposed a GA for solving the model with real data.

In the Split Delivery VRP (SDVRP), the first heuristic approaches were
introduced by Dror and Trudeau (1989, 1990). After these studies, most
of the subsequent work focused on meta-heuristics or hybrid schemes. One
example is the work of Archetti and Speranza (2012) who applied a tabu
search algorithm, and Boudia et al. (2007) used a genetic algorithm com-
bined with a local search procedure. Hybrid algorithms have then grown in
popularity, examples are found in (Archetti et al., 2008; Cheng and Wang,
2009). Many exact models have also been proposed on this problem, and
one example is the study in (Archetti et al., 2011). For further literature on
SDVRP we refer to (Archetti and Speranza, 2012).
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Finally, we mention the Service Technician Routing and Scheduling Prob-
lem (STRSP), which is the focus of the second part of the VeRoLog solver
challenge. Cordeau et al. (2010) solved a real life technician scheduling
problem for a large telecommunication company set as a competition by the
French Operational Research Society in 2007. In this paper an adaptive
large neighbourhood search algorithm is implemented. In (Xu and Chiu,
2001), the authors concentrated on a field technician scheduling problem in
the telecommunications industry, and their purpose was to maximise the
number of served requests as well as considering the request’s priority and
the technician’s skill level. A local search algorithm, a Greedy Randomised
Adaptive Search Procedure (GRASP) and a greedy heuristic algorithm were
proposed to solve the problem. Kovacs et al. (2012) studied the service tech-
nician routing and scheduling problem with the objective of minimising the
total routing and outsourcing costs. The authors used an adaptive large
neighbourhood search algorithm for solving the problem on artificial and
real-world instances. Pillac et al. (2013) proposed a parallel matheuristic
approach for solving a variant of the TRSP in which a number of techni-
cians with a set of accompanying skills, tools and spare parts need to be
scheduled and routed within given time windows. The study dealt with the
availability of tools and spare parts for the technicians and routing them to
the depot for the replenishment of tools. Xie et al. (2017) used an iterated
local search algorithm to solve the TRSP. They studied a variant where it
was given which technicians can serve which orders. The algorithm was
benchmarked on instances ranging from 25 to 100 orders and compared to
an ALNS algorithm, where it was found that it performs significantly better
on large instances with fast computational times.

10. Optimisation with Selection Hyper-heuristics

Research in computational intelligence and optimisation fields has a sig-
nificant influence on the design of bespoke heuristic algorithms for solving
real-world complex optimisation problems. However, most of these methods
require significant modification when applied to different problem domains,
making them highly specific to a single problem domain or a specific class
of problems or instances. This was the main inspiration for the develop-
ment of a general, problem-independent heuristic search methods, known as
hyper-heuristics.

Hyper-heuristics have emerged as solution methodologies that raise the
level of generality of search techniques for computational search problems.
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They can be defined as a high level automated search methodology, that ex-
plores the space of low level heuristics, or heuristic components while solving
computationally difficult problems. Since their development, they have re-
ceived significant attention in the research community, and competed against
other known heuristics and meta-heuristics in solving different variants of
complex optimisation problems.

A study by Fisher (1963) concluded that mixing and combining differ-
ent low level heuristics leads to better quality solutions than applying them
separately, where the single heuristic application can be effective at some
stages of the search, and perform poorly at others. This study was the ear-
liest motivation for the design of the general purpose framework of selection
hyper-heuristics. Following this, Cowling et al. (2000) was the first to use
the term hyper-heuristic and defined it as “a heuristic to choose a heuristic”,
and mentioned that hyper-heuristics work at a higher level of abstraction
than other meta-heuristics. In their study, they solved a personnel schedul-
ing problem and introduced most of the known basic selection and move
acceptance components.

Hyper-heuristics have higher abstraction capabilities than other meta-
heuristics, where the search is conducted on the space of heuristics, con-
trolling and perturbing a set of low level heuristics which work directly on
the solution space. Therefore hyper-heuristics are isolated from any specific
problem domain information and only control the low level heuristics as a set
of black boxes. In this way, the search can be utilised to focus on other qual-
ities, such as changes in the objective and the execution time of the search
process. This concept is known as the domain barrier, which explicitly pre-
vents any problem specific information from passing to the higher level of
hyper-heuristics. Burke et al. (2010) classified hyper-heuristics based on the
nature of the heuristic search space into selection hyper-heuristics that se-
lect from an existing set of heuristics, and generation hyper-heuristics that
generate new heuristics from the components of existing ones. The former
class, selection hyper-heuristics, is the focus of the work in this study.

Selection hyper-heuristics are based on an single-point based iterative
framework which repetitively applies a heuristic to a single solution at each
step of the search. A low level heuristic 2 is selected and applied to an initial
created solution at each iteration, and a decision is made if the new solution

2low level heuristics are operators that perform simple neighbourhood moves in the
solution when applied. They are designed according to the specifications of the problem
domain and can be either perturbative, or constructive heuristics.
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is accepted or not. A good selection hyper-heuristic selects a suitable low
level heuristic to diversify the search, if the search process stagnates locally.
This reflects the importance of the efficient design of a selection method that
can automatically lead the search.

The iterative framework of selection hyper-heuristics consists of two suc-
cessive stages, as has been identified by Özcan et al. (2008): a heuristic
selection to choose a low level heuristic and generate a new solution, and
move acceptance to decide the acceptability of the new solution based on
the fitness evaluation. The two processes iterate to improve an initially
generated solution until meeting a termination condition as illustrated in
figure 6. The general framework of selection hyper-heuristics is also demon-
strated by algorithm 3. Most of the selection hyper-heuristics components
are reusable, and can be applied in several problem domains, or instances of
the same domain without requiring any modifications. Another crucial fea-
ture of selection hyper-heuristics as described in Bilgin et al. (2006), is that
the different components of selection and move acceptance methods deliver
different performances on the same instance or problem domain. This obser-
vation means that different combinations of selection and move acceptance
components can be applied, and yet get varying performances depending on
the problem nature.

Algorithm 3: Algorithm for the general single-point based selec-
tion hyper-heuristics framework

1 Let S, S′, Sb be current, new, best solutions respectively;
2 Let LLH = [llh1, llh2, . . . , llh|LLH|] be the set of low level heuristics;
3 Sinitial ← InitialGeneration();
4 S ← Sinitial;
5 Sb ← S;
6 repeat
7 llh← Select(llhi, LLH);
8 S′ ← ApplyLLH(llhi, S) ;
9 if Accept(S′, S) then

10 S = S′;
11 end
12 if S isBetterThan Sb then
13 Sb ← S;
14 end

15 until timeLimit;
16 return Sb;
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Generate Sinitial

Scurrent ← Sinitial

Sbest ← Sinitial

Select llh ∈
{llh0, llh1, .., llhn−1}

Apply llh to
Scurrent → Snew

Acceptance Method

Accept Snew?

Scurrent ← Snew

Maintain Sbest

Terminate?

Return Sbest

(Heuristic Selection)
(Move Acceptance)

y

y

n

n

Figure 6: A generic selection hyper-heuristic framework. The green arrows represent the
acceptance component
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10.1. Classification of Selection Hyper-heuristics

Hyper-heuristic algorithms have been classified into sub-categories based
on a number of criteria. Burke et al. (2010) reviewed previous classifications
and provided a general classification based on two considerations: 1) the
nature of the heuristic search space, 2) source of feedback during learning.
With the first consideration, hyper-heuristics are classified into selection
and generation hyper-heuristics, where the former selects a heuristic from
pre-existing perturbation or constructive heuristics, and the latter gener-
ates new heuristic methods from components of pre-existing perturbation
or constructive heuristics. According to the feedback mechanism, selection
hyper-heuristics can be classified into online learning, offline learning, or no
learning mechanisms. The online learning selection hyper-heuristic learns
from feedback during the search to improve the process of selecting low level
heuristics, and the offline learning learns before the search starts on a set of
test instances. Selection hyper-heuristics with no learning select a heuristic
randomly, or from a fixed permutation without keeping a record of their
previous performance. Selection hyper-heuristics are also classified based on
the nature of the low level heuristics into two categories: selection perturba-
tive hyper-heuristics, and selection constructive hyper-heuristics Burke et al.
(2013). Perturbative hyper-heuristics work on complete solutions, while the
constructive process partially built solutions.

Drake et al. (2019), in their most recent survey on the advances of se-
lection hyper-heuristics research have identified other classes of selection
hyper-heuristics additional to the aforementioned. They have also extended
the above classifications to include the following classes:

• Nature of the low level heuristics set: the selection hyper-heuristic can
control the whole, reduced, or increased set of low level heuristics.

• Parameter setting: static, dynamic, or adaptive parameter setting. In
the static setting, the parameters are set statically prior to the search
process, and in the adaptive and dynamic setting, the parameters are
allowed to change reactively or dynamically during the search.

• Nature of the move acceptance: either stochastic or non-stochastic
based on whether a probabilistic framework is used on the acceptance
decision.

10.2. Online Learning Selection Hyper-heuristics

In the above section, we have discussed how selection hyper-heuristics are
classified based on the feedback mechanism to online, offline, or no learning
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hyper-heuristics. Research in hyper-heuristics has identified the importance
of incorporating learning mechanisms in order to raise the level of general-
ity of the framework and to make it more adaptive to the requirements of
the search. The offline learning approach requires test instances for train-
ing before the search starts, and this is usually a time consuming process,
and is not adaptive to the performance changes of the low level heuristics.
Therefore, online learning is a more practical option and has more potential
than offline learning.

Several studies have identified the impact of the choice of the hyper-
heuristic components and the parameter settings in the overall performance
across different problem domains or even instances of the same domain Bilgin
et al. (2006). Online learning methods therefore, contribute to solving this
issue by giving hyper-heuristics the ability to adapt, learn, and configure
themselves and accordingly optimise better Kheiri (2020).

Most of the existing online learning hyper-heuristics use reinforcement
learning. Here, the hyper-heuristic maintains a utility value for each low level
heuristic which is updated through a reward and penalty scheme. Some
examples of selected studies that used reinforcement learning are Özcan
et al. (2012); Nareyek (2003); Burke et al. (2003). We will describe our
online learning algorithm which uses a reward and penalty model based on
transitioning between several states of the low level heuristics that simulates
the states of the hidden markov model. Further details are in section 11.1.

10.3. Population-based Selection hyper-heuristics

There are various criteria used to classify selection hyper-heuristics, and
one of them is the solution nature, where selection hyper-heuristics are clas-
sified based on this measure into single point or multiple point. Most of the
previous research focused on the selection hyper-heuristic as a single-point
framework, where a single solution is iteratively improved until a termina-
tion condition is met (figure 6). However, there are many studies that have
applied the framework as a population by utilising multiple current solu-
tions during the search, usually each of them is improved individually and a
global best solution is found after a specific amount of running time. One of
the advantages of using a population-based hyper-heuristic framework is to
improve the diversity of the search and the exploration of the search space,
which can help to discover new regions that can improve the solution. How-
ever, one of the downsides is that the total run time will be divided between
the multiple solutions in the population, and therefore each solution will be
improved only during that specified amount of time.
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The majority of the previous studies on selection hyper-heuristics present
approaches based on single-point-based search, and only a few used a pop-
ulation of solutions or a mixed approach alternating between using single
and multiple solutions for the search. Moreover, those previously proposed
population based approaches are mostly a hybrid between a selection hyper-
heuristic and an evolutionary algorithm framework.

Cowling et al. (2002) investigated a genetic algorithm based on hyper-
heuristics for the personnel scheduling problem. A GA is implemented and
applied as a high level selector, and a set of low level heuristics are used at
each generation to locally improve the quality of each individual, where the
low level heuristics are applied in any sequence. Sabar and Kendall (2015)
proposed a Monte-Carlo tree search hyper-heuristic framework that tries to
identify good sequences of heuristics using a Monte-Carlo search tree. A
memory mechanism containing a population of solutions is utilised, and at
each iteration a solution from the population is selected, and the popula-
tion is subsequently updated using several updating rules. Lei et al. (2015)
proposed a memetic algorithm based on hyper-heuristics to solve an exam-
ination timetabling problem. Their approach constructs several heuristic
lists based on graph colouring heuristics and applies evolutionary operators
to generate new lists. A local search method is used to further optimise
the solutions. Hsiao et al. (2012) implemented a hyper-heuristic based on
variable neighbourhood search (VNS) iterating in two stages, first using a
population of solutions, and the second stage uses only a single solution.
Their approach consists of two main steps, shaking and local search. The
shaking phase improves the exploration of the search space, and the local
search step looks for the local optima. A population of solutions is used in
the shaking stage, where the authors argued that the diversity of solutions
is important in the first stages of the search to explore the right search path,
and after a period of time the best solution is picked from the population.
Tournament selection is used to filter unfit solutions from the population.
Lehrbaum and Musliu (2012) introduced a hyper-heuristic that alternates
between working on a single solution and a population of solutions. Their
algorithm starts by scoring the available local search heuristics, and a serial
phase working with single solutions starts by applying the heuristics sequen-
tially according to their quality scores. A parallel phase uses a population
of solutions, and a heuristic is applied to each individual in the popula-
tion. The algorithm switches back to the serial phase whenever a global
improvement is found (i.e., better than the best found solution so far).
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11. Selection and Move Acceptance Methods

We will outline here the set of selection and move acceptance methods
used in our study.

Most of the simple selection methods applied in this study were identified
in Cowling et al. (2000). These simple selection methods do not incorporate
a learning mechanism, but rather choose a low level heuristic randomly
from the set of low level heuristics or from a pre-determined permutation
of the low level heuristics. Simple Random (SR) uses a uniform probability
distribution to randomly select a low level heuristic at each step. Random
Descent (RD) selects a low level heuristic randomly, and repeatedly applies
it as long as it is making an improvement. Random Permutation (RP)
forms an initial permutation of the low level heuristics and selects one at
a time at each step. Random Permutation Descent (RPD) organises the
low level heuristics in a similar way to RP but applies the selected heuristic
repeatedly similar to RD if an improvement is made. The Greedy selection
method (GR) applies all low level heuristics to a candidate solution, and
chooses the heuristic that generates the most improved solution.

Move acceptance methods can be categorised as either deterministic or
non-deterministic. Deterministic methods always return the same decision
for any given set of input parameters, whilst non-deterministic methods
(inspired by meta-heuristic methods) depend on the current time or step in
making their decision. The deterministic methods applied throughout the
paper are: Only Improve (OI) which only accepts the improved solutions,
and Improve or Equal (IE) which accepts non-worsening solutions. The non-
deterministic move acceptance methods included are: Simulated Annealing
(SA), Great Deluge (GD), Late Acceptance (LA), Record to Record (RR),
and Näıve acceptance (Näıve).

Simulated annealing (see section 7.3.3) has been applied as a move ac-
ceptance component in selection hyper-heuristics by several studies Bilgin
et al. (2006); Kalender et al. (2013) and has proved to be successful. In
Bilgin et al. (2006), simulated annealing was used with the probability of
accepting worsening moves given by the formula:

pt = e
− ∆f

∆F (1− t
T

) (1)

where ∆f is the change in the evaluation function at time t, T is the maxi-
mum time and ∆F is the range for the maximum change in the evaluation
function.

The Great Deluge (GD) algorithm was first introduced by Dueck (1993).
It is based on a stochastic framework that accepts all improved solutions by
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default. Non-worsening solutions are accepted if their objective value is
equal to or better than a specific cost value called the ‘level’. Initially the
level is equal to the cost of the initial solution, and is updated afterwards
at each step with the following formula:

τt = f0 +∆F × (1− t

T
) (2)

where ∆F is the maximum change in the objective value, f0 is the final
expected objective value, T is the time limit, and t is the time at the current
step.

Late acceptance was first introduced in Burke and Bykov (2008). It
compares the quality of the current solution with the solution generated L
steps earlier during the search. This method requires the implementation
of a circular queue of size L to save the objective values of L previously
generated solutions. The performance of this method heavily depends on
the queue size as stated in Burke and Bykov (2008). Similar to SA, in Näıve
acceptance worsening solutions are accepted with a certain probability. The
difference is that this probability is fixed for Näıve and is predefined by the
user, while in SA, the probability varies in time and is calculated by the
formula 2.

Record-to-Record (RR) is a variant of GD which accepts worsening so-
lutions that are not much worse than the best solution in hand to an extent
based on the following formula:

obj(Snew) ≤ obj(sbest) + fr × obj(Sbest) (3)

Where fr is a factor that is updated during the search, starting with a large
value and gradually decreasing.

11.1. Sequence-based Selection Hyper-Heuristic

Generally, a selection method will choose a single heuristic and apply
it to the current solution to generate a new solution. In this study, as one
of our selection methods, we have utilised a scheme inspired by the hidden
Markov model (HMM) Kheiri and Keedwell (2017) that applies sequences
of heuristics to a given solution, where the low level heuristics represent the
hidden states of the model. In this selection method each low level heuristic
is associated with two probabilities: a probability to move to another low
level heuristic including itself, and a probability to determine whether to
terminate the sequence at this point. An outline of Sequence-based Selection
Hyper-Heuristic (SSHH) is given in Algorithm 4.
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Algorithm 4: Sequence-based selection hyper-heuristic

1 Let S, S′, Sb be candidate, new and best solutions, respectively;
2 Let Tran be the transition matrix;
3 Let Seq be the sequence construction matrix;
4 Let [lh0, llh1, llh2, . . . , llhn−1] be the low level heuristics set;
5 Let HeuristicsSequence be the application sequence of low level

heuristics;
6 HeuristicsSequence← [ ];
7 curr ← SelectRandomly[0, 1, 2, . . . , n− 1];
8 HeuristicsSequence.add(llhcurr);
9 repeat

10 next← SelectNext(Tran, curr);
11 HeuristicsSequence.add(llhnext);
12 Status← ComputeStatus(Seq, next);
13 if Status = end then
14 S′ ← Apply(HeuristicsSequence, S);
15 if S′ isBetterThan Sb then
16 Sb ← S′;
17 Update(Tran, Seq);

18 end
19 S ← Accept(S, S′);
20 HeuristicsSequence.clear();

21 end
22 curr ← next;

23 until TimeLimit ;

If the low level heuristics set is [llh0, llh1, . . . , llhn−1], we define a transi-
tion matrix (Tran = n×n) which specifies scores for each low level heuristic,
from which we derive the probabilities of moving from one heuristic to an-
other. We also define a sequence construction matrix (Seq = n × 2) which
stores scores for each of the n low level heuristics in two columns: continue
and end. Following the addition of each low level heuristic to the sequence,
the matrix Seq is used to compute the status of that sequence: either the
sequence will end at this point and the low level heuristics within it will be
applied to the current solution in the order in which they appear, or the
sequence will continue, and the next low level heuristic will be selected. Ini-
tially every element in the two matrices is assigned the value ‘1’, but these
values are incremented to reward sequences of low level heuristics that are
successful in improving the quality of the best solution so far.

At first, a random low level heuristic is selected (llhcurr) and added to the
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llh0llh1llh2llh3

llh0 1 1 1 1

llh1 1 1 1 1

llh2 1 1 1 1

llh3 1 1 1 1

conend

llh0 1 1

llh1 1 1

llh2 1 1

llh3 1 1

(a) Matrices initial values

llh0llh1llh2llh3

llh0 1 2 1 1

llh1 1 1 1 2

llh2 1 1 1 1

llh3 1 1 1 1

conend

llh0 2 1

llh1 2 1

llh2 1 1

llh3 1 2

(b) Matrices updated values

Figure 7: Example of updating the values in the transition and sequence construction
matrices: We assume the application of the sequence [llh0, llh1, llh3] improved the best
solution. The scores of these low-level heuristics in the “Transition Matrix” and the
“Sequence Construction matrix” are updated. This update increases the probability of
selecting this sequence in later steps.

sequence (line 8). The next low level heuristic (llhnext) is chosen by selection
procedure SelectNext (line 10) based on the roulette wheel selection strat-
egy with a probability equal to: Tran[curr][next]/

∑
∀j Tran[curr][j]. The

selected heuristic (llhnext) is then added to the growing sequence of low level
heuristics (line 11) and the status for this low level heuristic is computed with
the procedure (ComputeStatus) (line 12) which determines whether or not
the sequence will terminate at this point. The choice made here is also based
on roulette wheel selection with the probability of continuing the sequence
given by: Seq[next][continue]/(Seq[next][continue] + Seq[next][end]). If
Status = end, the sequence is complete and will be applied to the current
solution to generate a new solution (line 14). If the new solution is accepted
and improved over the best solution, the scores in the matrices for the rele-
vant low level heuristics are increased by one as a reward (line 17), increasing
the chance of selecting the sequence that generates improved solutions. In
addition, Seq is also updated by incrementing the end column for the final
low level heuristic in the active sequence of low level heuristics and incre-
menting the continue columns for the non-terminal low level heuristics. For
a more in depth description of the method with examples the reader can
refer to Kheiri and Keedwell (2015, 2017).

12. Hyper-heuristics in Routing Problems

Since the development of the hyper-heuristics framework, it has been
utilised for solving various important combinatorial optimisation problems
such as timetabling Bilgin et al. (2006); Ahmed et al. (2015), personnel
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Table 2: Some selected routing problems in which hyper-heuristics were used as solution
methodologies

Problem Domain Reference

Ready-mix concrete delivery Misir et al. (2011)
Dynamic capacitated vehicle routing Garrido and Castro (2012)
Capacitated vehicle routing Marshall et al. (2015)
Dial-a-ride with time window Urra et al. (2015)
Periodic vehicle routing Chen et al. (2016)
Vehicle routing with cross-docking Yin et al. (2016)
Inventory routing problem Kheiri (2020)

scheduling Cowling and Chakhlevitch (2003) routing Pisinger and Ropke
(2007); Garrido and Castro (2012); Walker et al. (2012), Bin Packing Ross
et al. (2002), and Constraint Satisfaction Terashima-Maŕın et al. (2008).
VRPs are area in which hyper-heuristics proved to be particularly success-
ful, and have been applied to solve different variants of VRPs (table 2).
Pisinger and Ropke (2007) used adaptive large neighborhood search (ALNS)
hyper-heuristic, and achieved the state of the art results for multiple vari-
ants of the VRP. Garrido and Castro (2009) presented a hill-climbing based
hyper-heuristic to solve instances of the capacitated VRP, managing a set
of perturbative-constructive pairs of low level heuristics and applying them
sequentially. Their approach provided quality solutions compared to other
methods in the literature. In their follow up work Garrido and Castro (2012)
the authors presented a self-adaptive hyper-heuristic capable of solving static
and dynamic instances of the CVRP. They controlled a generic set of pertur-
bative and constructive low level heuristics and designed a simple strategy
based on reinforcement learning ideas to assign reward and penalty values
and guide the operator’s selection. They tested their approach on several
benchmark instances and compared them to results obtained with previous
hyper-heuristics and other well-known methods in the literature, and found
that their approach provides high quality results with more adaptability to
dynamic scenarios than other methods. Walker et al. (2012) presented the
CVRP with time windows as one of the problem domains in the HyFlex
framework (Hyper-heuristic Flexible framework). They implemented data
structures, and objectives for the evaluation of the problem, as well as a
set of state of the art low level heuristics, and tested it using adaptive it-
erated local search hyper-heuristic. Their results showed the success of the
adaption mechanism in improving the performance of hyper-heuristics.
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The previous VeRoLog challenge 2016-2017 tackled a rich VRP problem
related to a cattle improvement company that regularly measures the milk
quality at a number of farms using specialised tools. These tools have to be
delivered to a number of farms (customers) on request and picked up again
a few days after delivery. The key challenge is how to schedule the deliveries
to satisfy the requests, whilst at the same time design efficient routes for the
pick-ups and deliveries. The second place winner on this challenge used a
hyper-heuristic approach based on an online selection method (Kheiri et al.,
2019).

In the UTRP, to the best of the author’s knowledge, the use of hyper-
heuristics is unexplored in the literature. Our reason for choosing it was
driven by several motivations: (i) Hyper-heuristics are reasonably generic
and are easy to implement and maintain. Thus we expect that our imple-
mentation can be applicable to other variants of the UTRP with minimal
adaptation. (ii) The success of hyper-heuristics in solving several NP-hard
optimisation problems generally and complex routing problems specifically
(Table 2). (iii) The use of a single solution based framework can help solv-
ing the run-time issues of the problem. (iv) With the aid of appropriate low
level heuristics, hyper-heuristics can handle complex solution spaces and
therefore help in solving complex versions of the UTRP.

13. Methods for Solving Multi-objective Optimisation Problems

13.1. Evolutionary Algorithms

Evolutionary algorithms are a broad category of population-based meta-
heuristics that have been widely accepted as a solution method for solving
Multi Objective Optimisation Problems (MOOPs) because of their ability
to produce multiple elements of the Pareto front in a single run. One of the
most well-known and vastly applied evolutionary optimisation algorithms is
Genetic Algorithms (GA) (section 7.3.1) which evolves through a number
of iterations called generations, a population of initial candidate solutions
called chromosomes each with a defined fitness value. As the search evolves,
the population becomes fitter and eventually converges.

A GA is well suited for solving MOOPs because of its population-based
nature. The generic single objective GA can be modified to produce mul-
tiple non-dominated solutions in a single run. One of the most important
components of a multi-objective genetic algorithm is the ranking method.
The ranking method uses the concepts of Pareto dominance to rank the so-
lutions, and according to the dominance rules, the population is ranked and
each solution is assigned a fitness value based on its rank in the population
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Konak et al. (2006). Also, maintaining diversity is an important considera-
tion to ensure solutions are uniformly distributed over the Pareto front, and
prevent the clustering of the solutions in specific regions which limits the
exploration of the Pareto front.

There are various known multi-objective genetic algorithms implemented
previously which are currently used in many applications. They differ in
their fitness evaluation procedure, elitism, and diversification approaches.
Some of these algorithms are: Multi Objective Genetic Algorithm (MOGA)
Fonseca et al. (1993), Strength Pareto Evolutionary Algorithm (SPEA) Zit-
zler and Thiele (1999), and Fast Non-dominated Sorting Genetic Algorithm
(NSGAI and NSGAII) Deb et al. (2002).

13.2. The Weighted Sum Method

The weighted sum method casts the MOOP problem as a single objec-
tive optimisation problem. This is achieved by summing all the objective
functions fi, and weighting them using weighting coefficients wi. Generally,
the weighted sum approach can be described with the formula:

k∑
i=1

wifi(x) (4)

Where wi ≥ 0, and
∑k

i=1wi = 1. Ideally, the weight values in equation 4
are set by the decision maker based on their deep knowledge of the problem.
However, as different objectives can have different magnitudes, the normal-
isation of the weights becomes essential in order to get a consistent Pareto
optimal solution to the assigned weights Grodzevich and Romanko (2006).
In this case a single weight can be computed as Wi = wiθi where wi are
the assigned weights and θi are the normalisation factors. Possible ways for
normalising the weights can be:

• Normalise the weights using the initial value of the objective function
such that: Wi =

wi
f(x0)

.

• Normalising using the minimum of the objective function: Wi =
wi

f(xmin)
where xmin gives the minimum solution to the objective function fi.

The weighted sum method is simple and straightforward to implement, with
a key advantage of transforming an MOOP to a single solution optimisa-
tion problem, allowing the application of single point based optimisation
methods to multi-objective problems. This approach is also computation-
ally efficient. However, the application of this method is very sensitive to
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the weight adjustments and requires precise tuning by the decision maker
and an intrinsic knowledge of the problem and its objectives in order to pro-
vide a good balance between the objectives through the weight coefficients.
Another drawback is that it requires a number applications for the single
point-based optimiser in order to get a number of solutions, in contrast to
evolutionary algorithms based methods which produce a full set of Pareto
optimal solutions in a single optimisation run. Additionally, one of the iden-
tified problems in the weighted sum approach, is their inability to find any
solutions laying in a non-convex region within the feasible solutions space
(figure 8). Therefore, multi-objective frameworks based on the weighted
sum approach have difficulties in finding solutions over a non-convex trade-
off surface Konak et al. (2006).

13.3. The Applied Weighted Sum Method

Throughout this paper, we have adopted the simple weighted sum ap-
proach in handling the multi-objective nature of the problems tackled, and
to create trade-off solutions as a part of the Pareto front. In the UTRP,
our method is based on normalising the two objectives of the passenger and
operator to ensure fairness and balance, as each objective represents a dif-
ferent measure. Different weight values are then used to find a spread of
compromise solutions. These weight values were obtained by exhaustively
trying several weights combinations and choosing the most successful. This
approach suited the purpose of applying selection hyper-heuristics to solve
the UTRP, as our objective was to find an efficient single point based com-
putational method that can provide high quality route sets for a variety of
instance sizes in a short computation time, and thus overcome the run time
issues of GA methods. In the VeRoLog solver challenge problem, and ac-
cording to the competition description and rules, a set of weights is provided
with each instance to determine which objective is more important in that
instance. In this case, the application of the approach was straightforward
by using the supplied weights and no further tuning was required.
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