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a b s t r a c t 

Following decades of sustained improvement, metaheuristics are one of the great success stories of opti- 

mization research. However, in order for research in metaheuristics to avoid fragmentation and a lack of 

reproducibility, there is a pressing need for stronger scientific and computational infrastructure to sup- 

port the development, analysis and comparison of new approaches. To this end, we present the vision 

and progress of the Metaheuristics “In the Large” project. The conceptual underpinnings of the project 

are: truly extensible algorithm templates that support reuse without modification, white box problem 

descriptions that provide generic support for the injection of domain specific knowledge, and remotely 

accessible frameworks, components and problems that will enhance reproducibility and accelerate the 

field’s progress. We argue that, via such principled choice of infrastructure support, the field can pur- 

sue a higher level of scientific enquiry. We describe our vision and report on progress, showing how the 

adoption of common protocols for all metaheuristics can help liberate the potential of the field, easing 

the exploration of the design space of metaheuristics. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Optimization problems have myriad real-world applications 

 Hoos & Stützle, 2005 ) and have motivated a wealth of research 

ince before the advent of the digital computer ( Dantzig, 1990 ). 

ecent decades have seen enormous progress in the discipline of 

etaheuristic optimization 

1 . In contrast to exact approaches that 
1 In this article (and in the spirit of Sörensen and Glover, Sörensen & Glover 

2013) ), we reserve the term “metaheuristic’ for the generic, cross domain frame- 

ork and the term “heuristic” for a customization of such a framework to one or 

ore specific domains. 
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uarantee optimality, “a metaheuristic is an iterative master pro- 

ess that guides and modifies the operations of subordinate heuris- 

ics to efficiently produce high-quality solutions. At each iteration, 

t manipulates either a complete (or partial) single solution or else 

 collection of such solutions. The subordinate heuristics may be 

igh or low level procedures, or a simple local search, or just a 

onstruction method. The family of metaheuristics includes, but is 

ot limited to: adaptive memory procedures, tabu search, swarm 

ntelligence, greedy randomized adaptive search, variable neigh- 

orhood search, evolutionary methods, genetic algorithms, scatter 

earch, neural networks, simulated annealing, and their hybrids”

taken from Voß et al, 1999 , p. IX; see also Pellerin, Perrier, & 

erthaut, 2020; Sörensen & Glover, 2013 ). One of the major ad- 

antages of metaheuristics is that they are abstract search meth- 

ds ( Senington & Duke, 2013 ): the underlying search logic can be 

pplied to any problem which can be decomposed into a few el- 

mentary aspects, namely solution representation, solution quality 

valuation and some notion of locality. The latter denotes the abil- 

ty to generate neighboring solutions via a heuristically-informed 

unction of one or more incumbent solutions. 

Very broadly speaking, one might distinguish between classical 

R and metaheuristic approaches with respect to the former’s em- 

hasis on analytic methods and the latter’s emphasis on empiri- 

al ones ( Swan, De Causmaecker, Martin, & Özcan, 2018 ). An an- 

lytic approach uses problem domain information (and typically 

lso a priori human ingenuity) to derive effective algorithms for 

earch components — edge-assembly (EAX) crossover for the Trav- 

lling Salesman Problem (TSP) being one such example ( Nagata & 

obayashi, 1997 ). Indeed, the pre-eminent successes of OR tend 

o arise from a direct match between the solver (e.g. linear pro- 

ramming) and the analytic characteristics of the problem. In con- 

rast, the use of analytic problem characteristics to choose solvers 

s not part of mainstream metaheuristics. The empirical approach 

erforms configuration tuning (by hand, using statistical design or 

ome machine learning technique) to create a metaheuristic biased 

ither offline by a target distribution of problem instances and/or 

nline by the search trajectory. 

Despite the significant progress in metaheuristic optimization 

esearch, it is increasingly acknowledged within the scientific com- 

unity that the field suffers from a duplication of effort and silo- 

ng of research between papers, groups, and software frameworks. 

his lack of re-use is evident at both conceptual and implementation 

evels: 

• Conceptual: an over-reliance on reasoning by metaphor 

( Sörensen, 2013 ) hides commonalities between algorithms, 

leading to the repeated discovery of the same ideas and heuris- 

tics, and widespread duplication of research effort. 

• Implementation: despite past efforts in developing software 

frameworks, there is a tendency to re-implement metaheuris- 

tics from scratch, hindering reproducibility and replicability 

( Pamparà & Engelbrecht, 2015; Swan, Adriaensen, Barwell, 

Hammond, & White, 2019; Swan et al., 2015 ). 

This duplication of effort limit s scientific progress; instead of 

uilding a cohesive body of knowledge consisting of robust scien- 

ific conclusions, accumulated wisdom in the field is more akin 

o “folklore”: observations over individual algorithms and opti- 

ization problems, without a structured underlying narrative. In 

he words of Pamparà, there is a “throw away” research culture 

 Pamparà & Engelbrecht, 2015 ): it is difficult to locate and compare 

gainst prior-art, and there is a lack of understanding as to which 

euristics work best and in what context. Despite the availabil- 

ty of many software libraries, it is difficult to reuse existing im- 

lementations — in particular, it is extremely difficult to combine 

euristics from different libraries or incorporate domain-specific 
394 
nowledge in a general manner, which has hindered the creation 

f easily testable and deployable metaheuristic pipelines. 

While many authors have identified and critiqued a lack of rigor 

nd weak empirical method in the field (e.g. ( Collberg, Proebsting, 

 Warren, 2015; Johnson, 2002; Kendall et al., 2016 )), we are more 

oncerned by the lack of generality of enquiry, and consequently 

he generality of conclusions. We believe that, instead of examin- 

ng individual datapoints concerning a particular algorithm imple- 

entation and a problem set of an author’s choosing, we should 

e investigating deeper scientific questions, such as: 

Q1 Why do our methods work? In particular, how can we as- 

sign credit to individual components and eliminate those 

that do not matter? 

Q2 How can we analytically arrive at a solution method given 

a problem description? Conversely, is it practically useful to 

map an optimisation problem of a given type into another? 

Is there a ubiquitous “SAT-like” problem to which many op- 

timisation problems can usefully be reduced to and solved 

in practice? 

Q3 Is it possible to more fully automate the exploration of the 

space of metaheuristics, allowing researchers to focus on im- 

proving that automation? 

To these ends, this paper describes the vision and progress of 

Metaheuristics in the Large’ (MitL). MitL is a research community 

nitiative (first introduced in Swan et al. (2015) ) that seeks to ad- 

ress the lack of re-use at both conceptual and implementation 

evel. MitL is both a synthesis and extension of existing ideas dis- 

ersed throughout the literature, and simultaneously a project pro- 

ucing new software tools and exemplars to show how these prob- 

ems can be overcome. We draw on many contributions previously 

ade in this direction: hyper-heuristics, constraint programming 

nd the fundamental principles of substitutability of software com- 

onents. We rely heavily on functional programming constructs 

o express metaheuristic components in a truly reusable way. In 

onstructing this synthesis, we have exposed gaps in the litera- 

ure that we are now closing with new contributions: in particular 

he MitL initiative has introduced a) the “Automated Open Closed 

rinciple” ( Swan et al., 2019 ), which shows how to express algo- 

ithm frameworks as ‘closed’ design spaces which can nonetheless 

e configured in an open-ended manner via combinatorial assem- 

ly, and b) the removal of the domain barrier from hyper-heuristics 

 Swan et al., 2018 ), essential in raising the level of genericity with

espect to problem domains. These address Q3, making easier au- 

omation of the space of metaheuristics, and hence progress to- 

ards answers to questions Q1 and Q2. 

This paper provides a survey, progress report and roadmap of 

ur attempts to reduce the fragmentation of metaheuristics re- 

earch, improve reproducibility, and accelerate progress through 

nfrastructure improvement. We have made several concrete steps 

orward and can see the road ahead, but there are many problems 

eft to be solved. 

. Contemporary Research Practice in Metaheuristics 

One may characterize researchers as being broadly concerned 

ith the scientific practice of obtaining concise explanations of 

mpirical observations ( Popper, 1963 ). In constrast, for practitioners 

e.g. in industry), the goal is to maximally exploit the information 

btained via research, with very little expert knowledge. We now 

resent in more detail some of the challenges facing metaheuristic 

esearch, drawing on previous discussions in the literature. These 

bservations motivate the MitL approach described in Section 3 . 
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.1. Replication and Reuse 

Scientific progress in any discipline requires ready determina- 

ion of the nature and merits of previous contributions, and the 

bility to build on the work of others to make further progress. 

lgorithm descriptions in many papers on metaheuristics are far 

rom precise enough to allow independent re-implementation, and 

ublic access to the associated source code is rarely mandated by 

ditors or programme committees. As a consequence, replication 

tudies are very uncommon: a recent such paper, the only repli- 

ation study in metaheuristics of which the authors are aware, ob- 

ained results which were an order of magnitude worse than those 

riginally claimed ( Sörensen, Arnold, & Palhazi Cuervo, 2019 ) 2 . 

As noted above, metaheuristics, and in particular Evolution- 

ry Computation research, has developed something of a ‘throw 

way’ culture ( Collberg et al., 2015; Pamparà & Engelbrecht, 2015 ), 

n which a large percentage of researchers neither build upon 

he research implementations of their peers nor create such re- 

sable software artifacts themselves. This inability to consolidate 

s in contrast to other research areas that have successfully em- 

raced re-use: for example the SBML standard 

3 in systems biology, 

hich allows the researcher to easily create test and deployment 

ipelines ( König, 2020 ); or the Taverna framework 4 used for work- 

ow construction in a variety of other scientific disciplines. One 

ight wonder why metaheuristics, which enjoy a small and ubiq- 

itous set of abstract components such as acceptance or perturba- 

ion, has seen relatively little progress in large-scale re-use. It is 

ossible that the very simplicity of metaheuristics at the compo- 

ent level is in part responsible for this culture of Babel-like prolif- 

ration. Metaheuristic researchers or practitioners often choose the 

reation of ad hoc solutions to using pre-existing resources, per- 

aps because implementing baseline versions of (say) Simulated 

nnealing or Genetic Algorithms from scratch is relatively simple 

provided they are not intended for reuse by others. 

The last few decades have seen the development of many pop- 

lar metaheuristic libraries, implemented in a variety of program- 

ing languages, some of which feature components that are (in 

rinciple) reusable at the framework level. A first collection can 

e found in Voß and Woodruff (2002) . Taking Evolutionary Al- 

orithms as an example, Parejo, Ruiz-Cortés, Lozano, and Fernan- 

ez (2012) provide an overview of commonly used libraries along 

ith their performances on benchmarks, including HeuristicLab 5 

agner and Affenzeller (2005) , ECJ 6 Luke (2017) , FOM 

7 Parejo, 

acero, Guerrero, Kwok, and Smith (2003) , Opt4J 8 Lukasiewycz, 

laß, Reimann, and Teich (2011) , jMetal 9 Durillo and Nebro 

2011) and JAMES 10 De Beukelaer, Davenport, De Meyer, and Fack 

2017) . The majority of these libraries support component interop- 

rability within their frameworks. However, a component imple- 

ented in a specific framework cannot readily be reused within, or 

ybridized with, another framework. Recognizing this problem, an 

arly attempt ( Merelo-Guervós, Castillo-Valdivieso, Romero-López, 

 García-Arenas, 2003 ) sought to achieve interoperability through 

he use of a common description language based in XML, al- 

eit restricted in focus to evolutionary algorithms. PISA ( Bleuler, 
2 It should be emphasized that this problem is not restricted to metaheuristics: 

 recent study ( Collberg et al., 2015 ) showed that in the computer science papers 

onsidered, 34.65% of them were not repeatable and the authors could not conclu- 

ively determine repeatability in another 20.87% of cases. 
3 http://sbml.org 
4 https://taverna.incubator.apache.org 
5 https://dev.heuristiclab.com/trac.fcgi/wiki/ 
6 https://cs.gmu.edu/ ∼eclab/projects/ecj/ 
7 http://www.isa.us.es/fom/ 
8 http://opt4j.sourceforge.net/ 
9 http://jmetal.sourceforge.net/ 

10 http://www.jamesframework.org/ 
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395 
aumanns, Thiele, & Zitzler, 2003 ) was another early attempt to 

chieve interoperability across frameworks 11 . In PISA, the problem 

omain component is separated from the metaheuristic compo- 

ent, and implementations of those components are reusable and 

nteroperable, communicating via a file-based textual description. 

In practice the extensibility of these frameworks is limited 

though uniquely, to our knowledge, a progression towards mecha- 

isms that enable wider re-use can be seen in CIlib ( Cloete, Engel- 

recht, & Pamparà, 2008; Pamparà & Engelbrecht, 2015; Pamparà, 

ngelbrecht, & Cloete, 2008; Peer, Engelbrecht, Pamparà, & Masiye, 

005 )), and, crucially, implementation often requires the modifica- 

ion of internal source code, presenting a barrier to distribution, 

euse, and understanding for other practitioners. We are left with 

 fragmented set of implementations that are incapable of repre- 

enting an extensible design space for metaheuristics, without re- 

uiring modification to the frameworks themselves. 

.2. Transparency 

Metaphorically-inspired approaches have recently suffered 

trong criticism for their lack of rigor. Where the use of metaphor 

bscures specific solution-domain mechanisms ( Sörensen, 2013 ) 

he novelty of the metaphorical contribution becomes difficult to 

etermine. At worst, this can lead to the re-invention or renaming 

f mechanisms that are already well-understood. For example, it 

as been argued that the popular ‘Harmony search’ metaheuristic 

an be formulated as a simple variant of the foundational ‘Evolu- 

ion Strategies’ approach ( Weyland, 2010 ), and it has recently been 

laimed ( Camacho-Villalón, Dorigo, & Stützle, 2019 ) that the ‘Intel- 

igent Water Drops’ algorithm is similarly not novel. Such ‘explana- 

ion by metaphor’ unnecessarily obfuscates the field and makes it 

ppear impenetrable to outsiders. In de Armas, Lalla-Ruiz, Tilahun, 

nd Voß (2021) a pool template is proposed and used to categorize 

etaheuristic algorithm components permitting to analyze them in 

 structured way. 

This problem is at least partly cultural: the ‘reward’ of publica- 

ions and citations in metaheuristics is often more readily achieved 

y producing a method that ‘beats the competition’ than one that 

akes the additional effort to be transparent about the contribu- 

ion of its mechanisms ( Adriaensen, Brys, & Nowé, 2014 ). While 

mproving on the state-of-the-art should always be a key driver for 

 research community, the relentless pursuit of (apparent) novelty 

nd the ‘up-the-wall game’ ( Sörensen, 2013 ) is counter-productive. 

or as long as researchers continue to labor in relative isolation, 

he risks of overfitting and misidentifying novelty remain present. 

n contrast, we propose in the following sections a more ‘bot- 

om up’ approach. With such an approach, new solution methods 

an be grounded in the principled decomposition of existing ones 

 López-Ibáñez, Mascia, Marmion, & Stützle, 2014 ), thereby allowing 

eady identification of potential novelty. 

.3. Knowledge Discovery 

Hooker (1995) and Sörensen (2013) argue that there needs to 

e more scientific analysis of how metaheuristics solve problems. 

f a metaheuristic claims to work in some way — say, for example, 

t is claimed that a particular operator works by moving the search 

ut of local minima — then experiments should be performed that 

est this, or (even better) a theoretical justification provided. This 

s a particular problem for complex metaheuristics, where a num- 

er of innovations are often introduced in tandem. Compounding 

his issue, the existence of ‘No Free Lunch’ theorems for optimiza- 

ion ( Wolpert & Macready, 1997 ) implies that metaheuristics often 
11 http://www.tik.ee.ethz.ch/pisa/ 

http://sbml.org
https://taverna.incubator.apache.org
https://dev.heuristiclab.com/trac.fcgi/wiki/
https://cs.gmu.edu/~eclab/projects/ecj/
http://www.isa.us.es/fom/
http://opt4j.sourceforge.net/
http://jmetal.sourceforge.net/
http://www.jamesframework.org/
http://www.tik.ee.ethz.ch/pisa/
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equire domain-specific heuristics for success ( Swan et al., 2018 ), 

nd current practices mean that any expert knowledge on which 

echanisms work well on a given problem must typically be re- 

erse engineered from publications on a per-case basis. To move 

o a more generalized level of enquiry, it is necessary to combine, 

xchange, and reason about metaheuristics and their component 

arts (such as acceptance, selection or perturbation) on a far larger 

cale than has been possible to date. Significantly, we believe that 

his requires a shift in community culture from ‘individual com- 

etition’ to ‘collective knowledge discovery’ and the development 

f a large pool of shared experimental data from which to draw 

eneral conclusions. 

One approach to deriving such general conclusions from a large 

ool of data is the application of data mining and machine learn- 

ng (ML) techniques successfully used by other communities (e.g. 

eta-learning ( Pappa et al., 2014 )). Individual publications have 

pplied ML methods to selecting or constructing heuristics, and 

rovide some evidence for their efficacy: Xu, Hutter, Hoos, & 

eyton-Brown (2008) proposed a portfolio solver that won sev- 

ral SAT competitions by automatically selecting between various 

tate-of-the-art SAT solvers based on a learned model of their rel- 

tive performance conditioned on problem properties; Thabtah and 

owling ( Thabtah & Cowling, 2008 ) show associative classification 

an indicate which heuristic to use in each iteration of a personnel 

cheduling problem; Miranda, Prudłncio, and Pappa (2017) used 

tness landscape information to decide whether to build or select 

 new particle swarm optimization algorithm; Nallaperuma, Wag- 

er, and Neumann (2014, 2015) generated predictive models of the 

est parameters from ant colony optimization methods based on 

eatures of previously evolved instances; Malan and Engelbrecht 

2014) used landscape characteristics to predict the success of a 

ollection of PSO algorithms on unseen continuous optimization 

roblems; Consoli, Minku, and Yao (2014) used online learning and 

eatures extracted from the fitness landscape of the problem to 

hoose the most appropriate genetic operator and Asta and Özcan 

2015) ; Asta, Özcan, and Curtois (2016) integrated knowledge dis- 

overy directly into the search algorithm. 

More generally, Smith-Miles, Baatar, Wreford, and Lewis 

2014) proposed a methodology where instances of a problem are 

epresented by a set of features in an instance space, and machine 

earning algorithms used to classify the regions of the space where 

lgorithms are expected to perform well or poorly, given many in- 

ights on algorithms strengths and weaknesses. Such feature-based 

pproaches provide a baseline for generating and mining knowl- 

dge of relevance to metaheuristic research and practice. 

The re-use of such knowledge will first require a knowledge- 

ase and the associated effort to constantly update it. Initial ef- 

orts towards a schema for such a database was presented by 

cheibenpflug, Wagner, Pitzer, and Affenzeller (2012) : their Op- 

imization Knowledge Database (OKD), contained data about al- 

orithms, the problems they were used to solve and their pa- 

ameters. The authors emphasize that populating the database is 

ime-consuming and requires the effort of the whole community. 

ther works in the literature have created specific instances of 

uch datasets ( Miranda et al., 2017; Smith-Miles et al., 2014 ). Such 

 community effort to effectively create and populate a knowl- 

dge base is paramount for the success of metaheuristics mining. 

iven a sufficiently rich representation for components, such anal- 

sis could be carried out in a semi-automated way. 

.4. Automated Design 

Contemporary scientific and engineering disciplines rely heavily 

n standardization and automated tools. The design of these tools 

nd their underlying algorithms tends to be an ad hoc process, 

ften regarded as an art rather than a science ( Hunt & Thomas, 
396 
001 ). As a consequence, the design of an algorithm is time- 

onsuming and costly. Furthermore, the process itself is rarely doc- 

mented, making it untraceable, i.e. it is often unclear what moti- 

ated certain design decisions (e.g. expert knowledge, experimen- 

ation, intuition) and which alternatives were considered. Not only 

o we lose potentially interesting information and insights which 

an be used to design algorithms in the future, it also makes the 

rocess susceptible to accidental human bias. 

The automated design of algorithms has significant potential to 

ddress these issues. Unsurprisingly, attempts to (partially) auto- 

ate algorithm design, in one form or the other, are ubiquitous 

nd can be traced back to the origins of computational intelli- 

ence (e.g. program synthesis ( Manna & Waldinger, 1980 ), genetic 

rogramming ( Koza, 1992 ), swarm algorithms ( Khichane, Albert, & 

olnon, 2008 ), algorithm selection ( Rice, 1976 ), algorithm configu- 

ation ( Birattari, Stützle, Paquete, & Varrentrapp, 2002 )). However, 

he application of these techniques has thus far been largely a priv- 

lege of experts, restricted to isolated case studies, and is far from 

 standard practice in algorithmics. 

The metaheuristics community is no exception. While meta- 

euristics are most commonly designed manually, the idea of au- 

omating this process is hardly new, and has been actively pursued 

or almost two decades in the hyper-heuristics ( Burke et al., 2013 ) 

nd the algorithm configuration ( Stützle & López-Ibáñez, 2019 ) 

ommunities. An important aspect of our vision (see Section 4 ) is 

o facilitate the integration and further development of these de- 

ign automation techniques. 

.5. Scalability 

Historically, computing systems have tended to get faster at an 

xponential rate. Software performance automatically scaled along, 

ithout requiring any additional effort s from the developer. The 

ituation is no longer so simple: contemporary systems, rather 

han getting faster and faster, are able to do more and more work 

n parallel ( Sutter, 2005 ). To take advantage of increasing paral- 

el processing capabilities, computations must be subdivided into 

 set of interdependent tasks to be executed efficiently in parallel 

cross multiple cores and/or across networked machines. In com- 

uter science in general, much human effort has been invested in 

lgorithm-specific parallelization strategies. 

Scalability is also an issue when solving ever larger problem 

nstances: despite the increase in computing power, it is hard to 

olve large instances of many practical optimization problems. This 

ill of course always be the case — contrary to other computa- 

ional domains, the field of combinatorial optimization will never 

ave “enough” computing power. Fortunately, many popular meta- 

euristics are ‘embarrassingly parallel’: for example, determining 

he fitness of each population member in evolutionary approaches 

an be readily parallelized; strictly from the performance point 

f view and depending on latency and throughput, this simplis- 

ic approach might not be the most efficient; however, the fact 

hat it can be done at all shows that there are parallel approaches 

hich are functionally equivalent to sequential ones and that have 

 straightforward implementation. 

Currently many metaheuristic methods rely on parallelism at 

 specific level of abstraction, typically by parallelizing either fit- 

ess evaluation or part of a population of solutions using an is- 

and model. Both these approaches are limiting in the assump- 

ions they make about the complexity of metaheuristics: to achieve 

ophistication beyond previous applications may, for example, re- 

uire much more complex and involved search operators and we 

ay wish to parallelize a metaheuristic not just at these fixed and 

lgorithm-specific levels, but to the greatest extent possible, i.e. at 

he level of individual components; in this sense, it might also be 

onvenient to simply use underlying concurrent or parallel mod- 
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ls, such as communicating sequential processes ( Guervós, Valdez, 

 Galeano, 2020 ). 

. The ‘Metaheuristics in the Large’ Approach 

The challenges of the previous section motivate the creation of 

nfrastructure support for community-wide sharing of problems, 

etaheuristic frameworks and heuristic components. In general, 

here are many good tools and libraries already in existence. We 

o not propose to reinvent or replace them; we are not proposing 

just another library” but rather a different way of structuring and 

mplementing metaheuristics research. 

Our proposed approach has three conceptual underpinnings: 

• Extensible and re-usable framework templates To support 

open-ended innovation and provide true reusability, these tem- 

plates (or any other suitable problem description language) 

must be configurable via a palette of components that is ex- 

tensible without requiring the modification of existing code . To 

support such extensibility and the automated configuration of 

these templates, we require a stronger notion of interoperabil- 

ity than existing software: there must be infrastructure sup- 

port for state-threading , i.e. passing framework or component- 

specific state (such as the temperature in simulated anneal- 

ing) via a dedicated mechanism. This strong notion of ex- 

tensibility is described in Section 3.1 . Our approach facilitates 

reuse through this extensibility, and transparency and auto- 

mated design by explicitly encapsulating component behavior 

(rather than relying on metaphorical description) and allowing 

machine-inspection of behaviors. 

• White box problem descriptions Having embraced the neces- 

sity of state threading, it follows that we can thread more than 

merely empirically-obtained data relating to the search trajec- 

tory. In particular, threaded state can include analytic informa- 

tion, such as declarative/white box problem descriptions. This 

analytic information can be used to guide algorithm selection 

or construction in a more informed manner than has tradition- 

ally been embraced by the hyper-heuristics community ( Swan 

et al., 2018 ). We discuss this further in Section 3.2 . 

• Remotely accessible frameworks, components and problems 

By building upon the two concepts above, it is possible to 

configure pre-existing, remotely-hosted, algorithm frameworks 

with some (potentially newly-devised) collection of heuristic 

components. The practical obstacle to further progress is then 

the relatively procedural one of community agreement on defi- 

nitions for component interfaces and communication protocols. 

For inspiration, we look to work on (Service-Oriented Architec- 

ture’, which we discuss in Section 3.3 . This enables widespread 

reuse, replicability, and shared knowledge discovery. 

.1. Re-usable Framework Templates 

The main obstacle to the open-ended extension and automated 

omposition of existing implementations of metaheuristic compo- 

ents is that they suffer from an intrinsic lack of modularity. In 

his section, we illustrate why this is an issue for research ‘in the 

arge’ and describe the proposed solution. In part, this is due to 

he lack of adoption of best practice from software engineering 

 Guervós et al., 2020 ). In the case of metaheuristics, there is an

dded complexity due to state dependencies between different al- 

orithms components, which we now describe. 

Framework configuration can be defined in general terms by 

xpressing frameworks as higher-order functions that take compo- 

ents as parameters. For example, a possible function signature 12 
12 The signature of a function is the formal description of its parameter and return 

ypes. i

397 
or acceptance for some generic candidate solution Sol is: 

ccept : incumbent : Sol × incoming : Sol → Boolean 

Listing 1 gives a simple local search framework that allows for 

hree design decisions, viz. the choice of perturbation, acceptance 

nd termination conditions. In order to support alternative designs, 

ocal search is a higher-order function : it takes as arguments sepa- 

ate functions for perturb , accept and finished and returns a can- 

idate solution of type Sol. As described above, accept takes as 

rgument a pair of candidate solutions (i.e. the incumbent and in- 

oming solutions) and returns the prefered one, denoted in the fol- 

owing listing as: 

ccept: (Sol,Sol) = > Sol 

erturb and finished are defined in the correspondingly ob- 

ious manner. 

Each specific triple of components ( perturb , accept , isFinished ) 

sed to configure the framework corresponds to a specific local 

earch algorithm. This allows us to concisely specify a combina- 

orial design space of alternative component configurations, and 

lso makes design space commonalities explicit. In order for a 

ramework to permit the substitution of different choices for each 

omponent, components must ultimately conform to some well- 

efined interface, e.g. the higher-order function arguments to the 

ramework have some signature that is fixed a priori . In our exam- 

le, for candidate solution type Sol (e.g. a list of cities in the Trav- 

ling Salesperson Problem) perturbation is assumed to have type 

ol → Sol . 

However, such fixed signatures are problematic if we wish such 

rameworks to be ‘closed to modification’, i.e. be able to accom- 

odate unanticipated component dependencies without requiring 

hanges to framework code. The need for such modification is 

learly incompatible with the MitL goal of frameworks that can 

e both shared across the research community and be configured 

perhaps automatically) with new components. As a concrete ex- 

mple: suppose we now wish to incorporate a further heuristic 

hat requires information about the search trajectory, e.g. a tabu 

ist of solutions ( Glover & Laguna, 1997 ) that promotes search di- 

ersification. We are therefore required to change the implementa- 

ion of local search to keep track of the trajectory. Listing 2 , gives

 revised version in which the history list of previous incumbent 

olutions is denoted by [ Sol ] . 

The modified implementation now supports solution-based 

abu mechanisms, but the issue of course persists if we wish to 

ncorporate components which require new state dependencies, 

or example Metropolis-Hastings acceptance, which requires some 

easure of ‘temperature’ ( Kirkpatrick et al., 1983 ) to be statefully 

aintained. In the general case, we clearly cannot anticipate in ad- 

ance what information will be required by some component yet 

o be devised. These are examples of environmental state , which 

rovides the context for decisions made by the search process. For 

xtensibility, it is therefore necessary for support for environmen- 

al state to be open-ended, i.e. for frameworks to be configurable 

ith components that access aspects of environmental state that 

re not known at the time of framework implementation. Princi- 

led handling of environment state is key to metaheuristic modu- 

arization, and is therefore essential for both component interoper- 

bility and scalability in automated construction of metaheuristics. 

he technical specifics of MitL support for this approach are de- 

cribed in an associated publication ( Swan et al., 2019 ) and sum- 

arized in Appendix A . Software exemplars of the proposed infras- 

ructure support are publicly available, as described in Appendix B . 

.2. White box Problem Representations 

It is well-known that the exploitation of problem information 

s key in rendering optimization problems tractable ( Wolpert & 
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acready, 1997 ). As such, a principal challenge lies in devising 

rameworks and solvers that support injection of problem informa- 

ion to drive the search process, without incurring loss of generic- 

ty (i.e. they can be applied to many different problems). 

By including white box problem descriptions as part of the en- 

ironmental state, it is possible to define frameworks in terms of 

ich domain information, allowing the aforementioned challenge to 

e tackled using an open-ended combination of human ingenuity 

nd automation. 

hat Kind of Information Can Be Exploited? 

In principle, any machine-readable knowledge could be ex- 

loited to bias the search, to synthesize feasible operators, etc. As 

iscussed in the introduction, this knowledge can be split into two 

ategories: 

Analytic knowledge about intrinsic features of the problem. 

Empirical knowledge gained through experience, i.e. experi- 

mentation. 

Many examples of successfully exploiting a combination of an- 

lytic and empirical knowledge can be found in the literature: 

• Reactive tabu search ( Battiti & Tecchiolli, 1994 ) exploits knowl- 

edge about the presence of specific substructures in candidate 

solutions to diversify the search, and uses trajectory informa- 

tion to adapt the tabu tenure parameter dynamically. 

• Variable neighborhood descent ( Hansen & Mladenovi ́c, 2001 ) 

exploits knowledge about the relative sizes of multiple domain- 

specific neighbor relations to (local) search them more effi- 

ciently, and uses empirical information (a candidate solution 

being locally optimal/improving) to switch between neighbor 

relations. 

• Matheuristics (e.g. Addis, Carello, & Ceselli, 2013; Nikzad, 

Bashiri, & Abbasi, 2021 ) typically combine analytical approaches 

such as ILP to solve sub-problems, with higher-level searches 

using empirical feedback on solution quality to build the results 

into solutions for a larger-scale problem. 

• Solution spaces can be decomposed using techniques with their 

origins in mathematical programming, to increase efficiency at 

the metaheuristic level ( Raidl, 2015 ). 

• Constraint relaxation (e.g. ( Fuellerer, Doerner, Hartl, & Iori, 

2010 )) typically uses analytical knowledge of the acceptable 

constraint bounds to allow a metaheuristic to search across in- 

feasible regions of the space using empirical feedback on so- 

lution quality to determine when the relaxation should be re- 

duced. Similarly, different heuristics can be targeted at different 

constraints, driven by analytical knowledge of the constraints 

themselves ( Goh, Kendall, & Sabar, 2017 ). 

• Portfolio solvers (e.g. SATzilla ( Xu et al., 2008 )), select between 

multiple solvers based on analytic features of the problem in- 

stance to be solved. The mapping from features to solvers is 

generated empirically, using machine learning. 
Listing. 1. Local Search framework pa

398 
istorical Development Towards White Box Approaches 

While the importance of exploiting problem structure is widely 

ecognized, arguably there is a historical aversion to do so at 

he hyper-heuristic level, leaving this task up to the domain- 

pecific instantiations or low-level heuristics ( Drake, Kheiri, Özcan, 

 Burke, 2020 ). Maintaining generality is often cited as the motiva- 

ion for this information hiding practice. For example, Chakhlevitch 

 Cowling (2008) argue for the importance of limiting problem do- 

ain information in achieving cross-domain generality in selection 

yper-heuristics. They argue that a framework can be applied to 

ny problem that shares the “lowest common denominator” char- 

cteristics. While sufficient for generality, information hiding is not 

ecessary. It is easy to see that a framework can exploit arbitrary 

nformation without loss of generality, as long as it is also capable 

f solving the problem without it. For instance, a general optimizer 

ould use gradient information when available (e.g. when training 

eural networks) and default to a derivative-free approach other- 

ise. 

The progression of hyper-heuristic research demonstrates an in- 

reased acknowledgment that use of white box problem descrip- 

ions is both possible and desirable. Following the pattern set by 

nitial work ( Cowling, Kendall, & Soubeiga, 2001 ), most of the se- 

ection hyper-heuristics studies maintain a black-box interface be- 

ween the hyper-heuristic and problem domain known as the do- 

ain barrier . The original rationale for the domain barrier, which 

isallows a hyper-heuristic from retrieving any problem-specific in- 

ormation, was thought to be necessary for cross-domain general- 

ty. However, it has been recognized that the domain barrier might 

e more a problem than a feature: Ross (2014) argued that an 

xplicit domain barrier that enforces a strict separation between 

he hyper-heuristic and the problem-specific aspects makes hyper- 

euristics undesirable for use in large real-world applications. Fur- 

hermore, ( Parkes, Özcan, & Karapetyan, 2015 ) and Pappa et al. 

2014) suggested an increased exchange of information between 

he problem domain and the higher search level which could then 

e analyzed via data science techniques and machine learning. 

ore advanced learning for heuristic selection has progressively 

een introduced ( Agarwal, Colak, & Eryarsoy, 2006; Ahmed, Mum- 

ord, & Kheiri, 2019; Bengio, Lodi, & Prouvost, 2020; Burke, Mc- 

ollum, Meisels, Petrovic, & Qu, 2007; Kheiri & Özcan, 2016; Qu, 

urke, & McCollum, 2009; Soria-Alcaraz, Ochoa, Sotelo-Figeroa, & 

urke, 2017 ). 

Recent work throws further doubt on the necessity of the do- 

ain barrier. Swan et al. (2018) state that work in constraint- 

atisfaction provides abundant evidence that problems can be de- 

cribed in a domain-independent manner without loss of solver 

enerality. The lack of necessity for the domain barrier was fur- 

her evidenced by Kheiri (2020) , who designed a hyper-heuristic 

tilizing extended domain information that nonetheless manages 

ow-level heuristics in a domain-independent manner. Martin et al. 

2016) designed a hyper-heuristic controlling the parameter set- 
rameterized by design choices 
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2  
ings of randomised heuristics based on an agent-based coopera- 

ive search framework. An ontology is used to translate problem- 

pecific elements into problem-independent abstract objects. 

hite Box Descriptions and Automation 

In order to communicate the required information to the solver 

nd its heuristics, it is necessary to move beyond the bespoke ap- 

roaches above: it must be possible to communicate arbitrary do- 

ain knowledge to an algorithm framework template. In a black 

ox setting, life is simple: solvers can choose from a closed set of 

nterfaces and can solve any problem that implements it. In con- 

rast, the white box setting is completely open-ended: solvers can 

equire whatever information they deem fit. Clearly, this presents 

n array of novel challenges. Most notably: 

1. Deducing (analytically) which solvers can be applied to which 

problems. 

2. Overcoming limited applicability due to interface mismatches. 

This is clearly a rich topic for further research. However, we be- 

ieve that some foundational aspects can be identified: 

1. The use of a declarative, machine-readable language to express 

the information problems provide, solvers require, and their re- 

lations. 

2. Automated algorithm selection and problem (re)formulation, as 

facilitated by white box descriptions ( Swan et al., 2018 ). 

The practical choice for such a language is rightfully an open- 

nded research question, but the MitL proposal ( Swan et al., 2018 ) 

s that prior art in Constraint Programming provides a suitably 

eneric baseline. Existing standards within Constraint Program- 

ing, such as XCSP3 ( Boussemart, Lecoutre, & Piette, 2016 ) sup- 

ort white box descriptions of constraints that capture a very wide 

ange of common problems. As research advances, the set of sup- 

orted constraints can further expand, without limiting applicabil- 

ty. Ultimately, interface boundaries will fade, causing a paradigm 

hift, where human researchers specify components using problem 

nformation and computers assemble them into a single frame- 

ork, automatically selecting the component believed to work 

est, based on all available analytic and empirical information. 

.3. Service-Oriented Architecture 

A large-scale solution to lack of re-use lies in “Service-Oriented 

cience”, which applies the increasingly-widely adopted practice of 

ervice-oriented architectures ( Hackney, Xu, & Ranchhod, 2006 ) to 

cientific computing. The concept is defined as “the pursuit of sci- 

ntific research using distributed and interoperable services, the 

ccessibility of these interfaces being the key to success” ( Foster, 

005 ). By such means, researchers can discover and access services 
399 
ithout developing specific programmatic clients for each data 

ource, or program. Such an approach clearly has the potential to 

ncrease scientific productivity via public and distributed services, 

nd also to increase data analysis automation. There are many ex- 

mples that attempt to boost this paradigm, such as the Open Sci- 

nce Grid ( Altunay et al., 2011 ) and GLOBUS ( Foster, 2005 ). These

rojects include scientific communities and globally distributed in- 

rastructures that support scientific and integrated applications of 

ifferent domains. 

As we have argued above, it is highly advantageous for meta- 

euristic researchers and practitioners to converge on a standard 

achine-readable language for problem description, experimental 

onfiguration and results. Service-Oriented Architectures (SOAs) of- 

er several ways to build a research workflow from these elements. 

OA is a computational paradigm in which agents interact us- 

ng loosely coupled, coarse-grained, and autonomous components 

alled services ( Rotem-Gal-Oz, Bruno, & Dahan, 2012 ). A service is 

 distributed entity, such as a node, program or function, used to 

btain a result, increasing the integration of systems that are het- 

rogeneous in respect of operating systems, protocols or languages. 

The SOA perspective promotes the creation of services that 

re discoverable and dynamically-bound, self-contained/modular, 

oosely-coupled, location-transparent and composable ( Valipour, 

mirzafari, Maleki, & Daneshpour, 2009 ). As such, SOA is clearly 

herefore a good fit for the process of “devolved community re- 

earch” which we advocate here. Lately, SOA has seen a trend to- 

ards “microservice architectures”: distributed, cloud-based and 

loud-native, these architectures follow the principle of separation 

f concern to create applications that are easily scalable and de- 

loyable, with a stable response and maximum availability. Several 

rameworks, such as the one proposed by Khalloof et al. (2018) , 

xploit the capabilities of microservices to create scalable systems 

hat can be used at different levels (from the desktop to the web) 

or optimization. However, at the time of writing there are no gen- 

rally accepted standards for microservice discovery, and although 

hey offer some advantages in terms of composability and scalabil- 

ty, they lack the service representation feature that would make it 

menable to use within a large-scale metaheuristics framework. 

OA for Metaheuristics 

Previous work on SOA for metaheuristics has mainly been con- 

erned with the application of a specific metaheuristic, such as Ge- 

etic Algorithms, to optimize a service selection or composition 

ased on the QoS (Quality of Service) of their execution ( Rosenberg 

t al., 2010 ). 

Different SOA technologies, such as web services, have been 

roposed for solving optimization problems via grid computing 

 Cox, Fairman, Xue, Wason, & Keane, 2001; Song, Keane, & Cox, 

0 03; Song et al., 20 04 ), where services are defined using WSDL
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13 http://mistic.heig-vd.ch/taillard/qualopt/ 
14 For a community effort that promotes best practices in benchmarking, we re- 

fer the curious reader to Bartz-Beielstein et al. (2020) . It discusses eight topics: 

clearly stated goals, well-specified problems, suitable algorithms, adequate perfor- 

mance measures, thoughtful analysis, effective and efficient designs, comprehensi- 

ble presentations, and guaranteed reproducibility. 
Web Services Description Language) interfaces and other trans- 

ission mechanisms (such as Remote Procedure Call ( Lim, Ong, 

in, Sendhoff, & Lee, 2007 ) or Globus Toolkit ( Imade, Morishita, 

no, Ono, & Okamoto, 2004 )). ROS (Remote Optimization Service) 

 García-Nieto, Alba, & Chicano, 2007 ) was one of the first at- 

empts to allow remote execution of metaheuristics, with inputs 

nd outputs described via XML specification. Other metaheuristic 

rameworks such as HeuristicLab include plug-ins to allow par- 

llelism and interoperability using web services ( Wagner et al., 

014 ). GridUFO is a service-oriented framework ( Munawar, Wahib, 

unetomo, & Akama, 2010 ), but it only allows the modification of 

he objective function and the addition of whole algorithms, with- 

ut combining existing services. 

García-Sánchez, González, Castillo, Arenas, and Guervós 

2013) have previously proposed a SOA for Evolutionary Algo- 

ithms. Several suggestions on different concerns about the design 

nd development of the elements of an evolutionary algorithm us- 

ng SOA were presented, such as the operator behavior, dynamism 

r solution representation. A specific SOA technology, OSGi, was 

sed as an example of implementation. More recently, MOSES 

 Parejo, 2016 ) was proposed as the design of a global architec- 

ure based on service contracts, allowing the automation of the 

xperimentation process in a metaheuristic optimization context. 

his architecture is based on different tools, such as specific auto- 

atic experimental description languages and statistical services, 

orming a contract-based chain of software components for exper- 

mental execution. These global architectures have already been 

roposed for other fields, such as distributed simulation ( Taylor, 

019 ). 

Most of these approaches are more or less direct mappings 

rom the original implementation to a SOA framework; however, 

ne key way in which the proposed approach facilitates knowledge 

iscovery is the ability to add arbitrary instrumentation to com- 

onents via the generic environment representation. In particular, 

his allows for data mining on metaheuristic traces. In addition, 

y employing our generic notion of state (which denotes one or 

ore solutions, together with any environmental information re- 

uired to represent the current algorithmic state of the search), the 

ame framework can instantiate metaheuristics operating at differ- 

nt scales. For example, a composite recombination operator can 

hoose from different types of recombination strategies, putting 

eta and hyper-heuristics under the same framework (e.g. in the 

anner of Woodward, Swan, & Martin (2014) ). Having these differ- 

nt types of algorithms under a common framework greatly facili- 

ates their extension and comparison. 

More generally, we envision the emergence of a distributed, 

ommunity driven suite of tools, providing an expanded repos- 

tory of interoperable frameworks and components, bringing to- 

ether researchers and practitioners across domains, unifying the 

eld and closing the gap between scientific research and empirical 

ractice. 

. Use-Cases for MitL 

As we have intimated, a purely technical solution to the issues 

f metaheuristics research is insufficient: community-level engage- 

ent is also required. While we have proposed a means by which 

xtensible algorithm templates can integrate with other frame- 

orks, the ultimate arbiter for success is the enthusiasm of the 

ider research community to embrace such initiatives. In this sec- 

ion, we describe some of the prospective benefits of doing so. 

A recent paper by Kendall et al. (2016) has, importantly, em- 

hasized the need for good laboratory practice in optimization re- 

earch. The set of practices that they advocate includes making 

atasets available in a standardized format, reporting the results 

rom the individual components of a hybrid approach, describing 
400 
n a reproducible way the evaluation function and the metaheuris- 

ic used, clearly presenting computational times, the use of appro- 

riate statistical tests, etc. We disagree with none of this. However, 

 driving philosophy for MitL is that it is necessary to go beyond 

he mere advocacy of good practice, to making it easy — indeed, 

lmost inevitable — that good practice can happen. The MitL pro- 

osal is that it is possible to embed foundational support for good 

ractice directly into the software that is used by metaheuristics 

esearchers, consequently making the fruits of that research avail- 

ble to other practitioners as via their default workflow. Below, we 

escribe some specific use cases in metaheuristic research which 

re facilitated by the proposed approach. 

.1. Comparison between Metaheuristics 

Many papers in the metaheuristics literature compare the per- 

ormance of a new metaheuristic against a small sample of other 

etaheuristics. Sometimes, it is made clear that the comparators 

hosen have been specifically selected because they represent the 

tate-of-the-art for that particular problem area: however, in many 

ases this is not made clear. Furthermore, many papers simply 

ompare the new metaheuristic against other metaheuristics of the 

ame broad type, for example, comparing a new variant on Particle 

warm optimization (PSO) against other PSO variants. 

Providing some evidence for the effectiveness of a new method 

s clearly important. However, as the number of metaheuristics 

ontinues to expand, comparing against a few other metaheuristics 

eems weak; even where an assertion is made that the compara- 

ors represent the state-of-the-art, this is usually presented as an 

ssertion to be taken on trust, and the method used to choose the 

omparators is unstated. In particular, there is no guarantee that 

he chosen problem instances actually exhibit different landscape 

haracteristics. We therefore propose that creators of new meta- 

euristics should test their metaheuristics against all other appro- 

riate metaheuristics. 

The overall aim is therefore to ensure that comparisons are both 

horough and fair. This is clearly only realistic at a large scale if 

he process of comparisons is automated. Some initial progress in 

his direction was made several years ago: Taillard (2005) suggests 

hat iterative metaheuristics should be compared not only for a 

ingle computational effort (e.g. giving the best solution found af- 

er a fixed number of iterations), but also continuously at each 

teration 

13 . Some recent work has also started to address the is- 

ue of fair comparison of algorithms by providing statistical testing 

rameworks which ensure that the preconditions for the various 

ests applied are actually met ( Neumann, Swan, Harman, & Clark, 

014 ). This is particularly important for metaheuristics, since com- 

on assumptions (e.g. of normality) are not in general true. There 

s also a need to ground reported results in terms of “effect mag- 

itude” ( Neumann et al., 2014 ): for example, an improvement of 

.1% on the state-of-the-art may have more practical relevance for 

he Traveling Salesman Problem than for Bin-packing. In addition 

o statistical considerations, the specifics of the termination condi- 

ion are obviously also a vital aspect of fair comparisons. We claim 

hat the transparency afforded by the proposed approach is vital in 

nsuring that comparisons are commensurate. 14 

http://mistic.heig-vd.ch/taillard/qualopt/
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.2. Testing Against Problem Instances 

Establishing the effectiveness of a metaheuristic requires two 

omponents: other metaheuristics against which to compare, and 

 range of problem instances upon which to compare them. Again, 

any papers in the metaheuristics literature are considerably less 

han comprehensive in the range of problems which are investi- 

ated. While certain benchmark test suites are available, the appli- 

ation of a specific new method to these benchmarks is often done 

n a seemingly ad hoc way, with a number of examples from the 

enchmark chosen without any justification ( Hooker, 1995 ). 

As described in previous MitL work ( Swan et al., 2018 ), progress 

n this area depends on the ability to express a wide variety of 

roblem types in a common format. This further facilitates the cre- 

tion of systems that could apply a new metaheuristic systemat- 

cally over a wide range of problems. Researchers would not be 

imited by the amount of time it would take to set up experiments 

ith a large number of problem instances; an automated script can 

ork through a repository of problems, automatically applying the 

ew metaheuristic to each appropriate example. 

Of course, benchmarking metaheuristics cannot be reduced to 

imply counting the number of problems for which a particular 

etaheuristic is “better” than another one ( Bartz-Beielstein et al., 

020 ). Instead, the aim of this would be to gather a rich set of

ata about the performance of each metaheuristic on a wide vari- 

ty of problem types and instances. Such a knowledge database, in 

ombination with white box descriptions of problems (and intro- 

pectable methods), could then be mined to gain deeper insights 

nto which methods work best when (and why). In particular, it al- 

ows more general metaheuristics to be constructed automatically 

rom more specialized ones (e.g., using algorithm selection portfo- 

ios as in Xu et al. (2008) ). 

.3. Hybridization 

The hybridization of solution methods has been a successful 

pproach for combining the complementary strengths of differ- 

nt optimization paradigms and to reduce their individual weak- 

esses with the aim of obtaining more effective algorithms (see 

.g., Milano and van Hentenryck (2011) for a review from the per- 

pective of the CP-AI-OR community). Hybrid approaches can be 

lassified according to many dimensions ( Puchinger & Raidl, 2005 ), 

.g. whether the components involved in the hybridization come 

rom different search paradigms (usually constructive methods or 

xact methods such as Constraint Programming or Integer Linear 

rogramming) or whether they are homogeneous (e.g., local search 

r evolutionary methods). Indeed, presenting a specific hybridiza- 

ion of two or more metaheuristics is a common source of novelty 

n metaheuristic research. Unfortunately, the way in which these 

ybridizations are evaluated is often a very simplistic comparison 

n terms of accuracy or error measures, without any attempt to at- 

ribute specific behaviors in a run of the metaheuristic to particular 

omponents, or indeed to perform any elimination of “accidental 

omplexity” ( Adriaensen et al., 2014 ). 

Often, the way in which metaheuristics are combined is the 

trongest contribution of a method. For example, ’Fair Share ILS’ 

 Adriaensen et al., 2014 ) performs well because of the synergis- 

ic interaction between its acceptance and perturbation heuristics. 

ore generally, it is of relatively little use for perturbation to be 

perating strongly as a “search intensifier” if the acceptance crite- 

ion only permits large increases in solution quality. Such decisions 

re best informed via large-scale studies (as supported by com- 

inatorial assembly over a range of problems and algorithm con- 

gurations) and component instrumentation (as supported via the 

roposed environmental state threading). 
401 
.4. Matching Metaheuristics to Problem Types 

Although there has long been interest in relating problem char- 

cteristics to solution strategies ( Rice, 1976 ), we claim that this is 

n area that has been particularly hindered by the lack of re-use. 

ne problem with these studies, valuable as they are, is that they 

epresent a single sample point in time. As new metaheuristics are 

reated, the value of that cross-cutting analysis becomes weaker, as 

esearchers present new, ad hoc evidence for the value of a particu- 

ar metaheuristic on a particular problem. Given the importance of 

uch cross-cutting studies, we propose that it is key for the com- 

unity to support a constantly-updated repository of metaheuris- 

ics and experiments, and subsequently so that the most effective 

etaheuristic for a particular problem area can be identified and 

ept up-to-date. Importantly, this would need more than just the 

reation of such a repository. Analysis tools would also be needed, 

hich would mine the ever-expanding repository to find features 

hat best predict which kind of metaheuristic is well-suited to a 

ovel dataset. This would ideally involve the automated applica- 

ion of metaheuristics to problems, with the repository constantly 

eing updated as new problems and (meta)heuristics are added. 

. Conclusion 

Metaheuristics in the Large (MitL) is a community project that 

ddresses some of the cultural and technical issues we believe are 

mpediments to progress in metaheuristic research: 

• Through the MitL component-based architecture and explicit 

state threading outlined in Section 3 , heuristics can be de- 

scribed from a behavioral standpoint, moving away from an 

over-reliance on metaphor and the accidental re-invention of 

established heuristics. 

• It is vital for the research community to eliminate the need 

to modify existing framework source code when implementing 

new heuristics. Whilst this is of great benefit to a practitioner, it 

is essential for the open-ended combinatorial assembly of meta- 

heuristics. Design automation can raise the abstraction level of 

research from manual labor such as parameter tuning and se- 

lecting and combining heuristics, towards answering more gen- 

eral scientific questions. 

• Within the space of a few years, Deep Learning approaches 

have changed the perspective on what is possible in Machine 

Learning. By following MitL’s approach to defining heuristics, 

it should be easier for practitioners to recursively define very 

large-scale metaheuristic architectures (e.g. exploiting paral- 

lelism) without undue concern for low-level implementation 

details, enabling exploitation of the large-scale parallelism of 

modern compute platforms. 

The approaches described in Section 3 combine to provide a ba- 

is for extensible Software as a Service implementations of meta- 

euristics provided via stateless web-services, supporting shared 

ramework templates which allow combinatorial assembly and 

omparison of metaheuristics. The language and platform agnos- 

icism of this approach in turn addresses issues of reproducibility 

nd scalability. 

Metaheuristics are one of the great contributions to practical 

omputer science of the last few decades. However, without in- 

eroperable frameworks for analyzing, comparing and hybridizing 

hem, advances in the science of metaheuristics are few and far be- 

ween. Once such frameworks are in place, we will be able to put 

etaheuristics on a much more experimentally rigorous footing, to 

dvance the science of metaheuristics, and to build a communal 

esource that is of benefit to both practitioners and researchers in 

his important area of computational intelligence. 
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In this article, we have described the key functionality that sup- 

orting infrastructure requires. What is now needed is community 

onsensus on the relatively procedural aspects of interoperability 

rotocols. Editors and reviewers can then insist on a thorough and 

ystematic application of new metaheuristics to a wide range of 

roblems, with the attendant rich analysis possibilities that are 

pened up. 
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ppendix A. The ‘Automated Open-Closed Principle’ 

Existing metaheuristic implementations handle environmental 

tate in different ways. Many make ad hoc use of non-local vari- 

bles to share information between components. This runs counter 

o automated assembly requirements: in order to present them to 

 configuration tool, such dependencies must be specified manu- 

lly, i.e. the configuration space cannot be derived from the im- 

lementation automatically. That being said, some implementa- 

ions treat environmental state in a more principled manner (e.g. 

 Cahon, Melab, & Talbi, 2004; Di Gaspero & Schaerf, 2003 )). Here, 

etaheuristics are typically described as compositions of generi- 

ally typed, stateful components having a well-defined interface 

ontrolling access to the encapsulated state. A framework then ex- 

licitly passes the shared state between subordinate components. 

hile it has been demonstrated in prior-art that such implementa- 

ions can be successfully coupled to configuration tools to perform 

ottom-up automated assembly ( Marmion, Mascia, López-Ibánez, 

 Stützle, 2013; Stützle & López-Ibáñez, 2019 ) in the small , they do

ot support the open-ended extension we propose is required in 

he large (as explained in Section 3.1 ). 

In software engineering, a framework which can be config- 

red from an open-ended palette of components while remain- 

ng unchanged is said to conform to the “Open-Closed principle”

‘a framework should be closed to modification, but open to ex- 

ension by new components’). We have extended this principle 

 Swan et al., 2019 ) to incorporate the behavior required to sup- 

ort automated design, yielding the “Automated Open Closed Prin- 

iple” (AOCP); that paper discusses the issue in greater technical 

etail and describes experiments with a suitably equipped algo- 

ithm configurator. The adoption of the AOCP provides open-ended 

euse of components, and thus a systematic approach to the auto- 

ated exploration of the metaheuristic design space. A key aspect 

s that components must be “pure functional”, as a first approxi- 

ation 

15 this can be interpreted as meaning: 

• They do not rely on hidden state. 

• For the same argument, they always return the same result. 

Note that aforementioned metaheuristic implementations us- 

ng global variables and/or stateful components clearly violate the 
15 The interested reader is referred to the wealth of literature on ‘referential trans- 

arency’. 
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OCP. An alternative to state encapsulation is the use of state 

hreading ( Kocsis, Brownlee, Swan, & Senington, 2015; Merelo 

uervós & Valdez, 2018 ), as can be seen in Listing 2 where 

erturb , accept , and finished each take an additional pa- 

ameter that is used to thread the environmental state through the 

earch algorithm. More generally, using state threading, the desired 

ignature for accept is of the form: 

ccept Sol,En v : Sol × Sol × En v → Sol × En v 

owever, manually threading the state through the algorithm (as 

n Listing 2 ) of Section 3 is error prone, since the framework im- 

lementer must ensure that the correct value of the state is passed 

o the correct stage of the algorithm. It is instead desirable to use 

 mechanism that implicitly performs state threading in a well- 

efined and consistent manner. 

In functional programming, the problem of state propagation is 

ddressed via a well-known design pattern: the State monad . For 

he purposes of this article, we can simply consider a monad to be 

 principled means of sequencing computations whilst abstracting 

ver possible side-effects (in this case, state manipulation). 

Functional languages such as Haskell and Scala provide syntac- 

ic sugar for monads. In particular, they allow monad operations 

o be chained together using syntax that looks like a traditional 

or loop. This is illustrated in Listing 3 , a re-formulation of our 

ocal search example in Listing 1 that uses the State monad. The 

tate, in this case an integer representing the number of iterations, 

s implicitly threaded through each stage of the computation. This 

an be extended to yield a re-formulation of Listing 2 , by defining 

hat Env allows access to [Sol] the search trajectory. Although 

he algorithm in Listing 3 looks similar to its imperative counter- 

art, the internal state is fully encapsulated within the definition 

f LocalSearch . 
By virtue of open-ended support for state dependencies, the 

roposed approach therefore supports bottom-up automated as- 

embly. Such an approach is less subject to human bias than the a 

riori prescription of a particular metaheuristic and therefore has 

elevance to foundational knowledge discovery efforts. In other ar- 

as of design (e.g. manufacturing), standardization has allowed a 

hift from the design of integrated systems to the design of indi- 

idual components within the system. In metaheuristics, this re- 

ects the natural trend for incorporating specialized problem- or 

olution-domain knowledge, i.e. a researcher can specialize in a 

articular kind of component such as acceptance criteria and de- 

ermine their cross-domain ubiquity. 

It might be thought that a monadic workflow requires meta- 

euristic researchers to become expert functional programmers, so 

t should be emphasized that this workflow is a consequence of 

ur proposed formulation, rather than a mandatory aspect. In par- 

icular, the intention is that core metaheuristic templates can be 

ritten monadically ‘once and for all’, allowing non-expert users of 

hese frameworks to obtain the benefits. Another minor but pleas- 

ng property is that the explicit denotation of state makes the pa- 

ameter space of a component explicit, facilitating configuration 

ia automated tools such as Irace ( López-Ibáñez, Dubois-Lacoste, 

érez Cáceres, Birattari, & Stützle, 2016 ). 

This pure functional perspective also provides a number of 

ther advantages ( Hughes, 1989 ), of particular relevance to large- 

cale and automated design of metaheuristics: they make it easy 

o reason about behavioural equivalence and coupling between 

omponents, hence improving transparency. Determinism and lack 

f side-effects yields reproducibility of behavior. Furthermore, a 

unctional treatment of metaheuristics greatly facilitates architec- 

ures which can take advantage of abundant computing resources, 

.g. thread-safe parallelism ( Hammond & Michaelson, 1999 ) or 

Service-Oriented Architecture’ (SOA) implementation via stateless 

eb-services, as subsequently described in Section 3.3 . 
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To our knowledge, the first proposed use of monads for state 

hreading in metaheuristics was as part of the MitL initiative ( Swan 

t al., 2015 ), whilst the first concrete implementation subsequently 

ppeared in CILib ( Pamparà & Engelbrecht, 2015 ) and has since 

een further developed ( Pamparà & Engelbrecht, 2019 ). Although 

here have been many frameworks and publications that describe 

modular decompositions’ of metaheuristics, to the best of our 

nowledge only MitL and CILib employ this principled approach to 

pen-ended state dependencies. The additional contribution of the 

itL initiative in this respect is the use of the monadic approach 

o explicitly support automated assembly ( Swan et al., 2019 ): of 

articular value in this respect is the fact that a strict type-system 

an be used to discriminate between stateless and stateful oper- 

tions and to provide information about which aspects of compo- 

ent behaviour contribute to solution quality, this being vital for 

he elimination of accidental complexity. 

ppendix B. MitL Software Libraries 

Realizing the MitL vision of community-level research based on 

hared scientific infrastructure requires the development of three 

entral building blocks: 

1. Support for modular, extensible metaheuristic frameworks. 

2. Machine-readable descriptions of problems, heuristic compo- 

nents and results. 

3. A two-tier architecture defining both Programmatic and a Ser- 

vice Oriented interfaces, the latter being in direct correspon- 

dence with the former. 

Taken together, these building blocks provide necessary support 

or the construction of a community knowledge base, in which 

xed ‘reference versions’ of metaheuristic templates can be con- 

gured with problems and components in an open-ended manner. 

lthough the main purpose of this this paper is to describe the 

otivation and vision for MitL, the project has nonetheless made 

oncrete implementation progress. The MitL repository ( https:// 
403 
ithub.com/MitLware ) contains various software libraries providing 

nfrastructure support, together with a number of examples of how 

he proposed approach can be applied in practice. The infrastruc- 

ure support libraries are: 

• MitLware-java 
This library contains Java interfaces for the ‘Metaheuristics in 

the Large’ components (Perturb, Evaluate etc), as motivated by 

the discussion in Section 3.1 . 

• mitl-support 
This library contains general utilities, metaheuristic-specific and 

otherwise. The former includes random selection and sampling. 

• mitl-problem 
Example problem domains, defined in terms of the 

MitLware-java interfaces. The problem domains include: 

various bitvector problems, such as Checkerboard, Royal Road, 

Trap and HIFF; blocksworld; tower of Hanoi; the Iterated 

Prisoner’s Dilemma; Magic Square; the n -puzzle; the De Jong 

suite of real-vector problems; SAT; the TSP; the Travelling-Thief 

Problem; Windfarm placement. 

• mitl-solution 
Representations for ubiquitous candidate solution types (e.g. 

permutations, bit vectors and polynomials), as used in 

mitl-problem . 

Although the following examples happen to be implemented 

n Java/Scala, adoption at the Service-Oriented Architecture level 

eans that components written in other languages can nonethe- 

ess interoperate via standard serialization protocols (such as JSON 

r XML). For example, either or both of client or server in 

itl-soa-example could be written in any language, as long 

s it is capable of serializing candidate solutions in JSON. The ex- 

mple applications include: 

• mitl-whitebox-hyper-heuristics 
As an elementary example of the approach described in “A Re- 

characterization of Hyper-Heuristics”, this demonstrates a white 

box analog of the hyflex hyper-heuristic framework which 

https://github.com/MitLware
https://github.com/MitLware
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takes as input any problem domain (examples used are SAT, 

bin-packing, TSP, the vehicle routing problem) generically de- 

scribed via the XCSP constraint programming format. It then 

uses heuristic pattern matching to determine if the problem 

constraints are isomorphic to the TSP: if so, then the prob- 

lem is rewritten on the fly to TSPLib format and a dedicated 

TSP solver (Concorde’s ‘LINKERN’ ( Applegate, Bixby, Chvatal, & 

Cook, 2007 )) is used, if not then the generic Choco Solver 

( Prud’homme, Fages, & Lorca, 2016 ) is invoked instead. 

• mitl-soa-example This provides a concrete demonstration 

of the ‘two tier architecture’ described above: the MitL compo- 

nent interfaces defined in MitLware-java are ‘lifted’ to the 

service level via RPC (Remote-Procedure Call) support. There 

is thus a 1-1 correspondence between local and remote com- 

ponent interfaces. A metaheuristic framework can therefore 

be transparently configured with components that happen to 

be hosted remotely. A simple client-server example is pro- 

vided, with remote invocation of a perturbation heuristic via 

JSON-RPC. The server-side implementation of perturb is actually 

achieved via a constraint solver, thereby giving another exam- 

ple of how one may freely mix between analytic ‘OR-style’ and 

empirical ‘metaheuristic-style’ approaches. 

• mitl-ecj-jmetal-interoperability-example 
The ECJ ( Luke, 2010 ) and JMetal frameworks ( Durillo & Nebro, 

2011 ) are both popular and widely used. However, it is not an 

easy task to achieve interoperability between them. This appli- 

cation shows how both can be represented as a MitL Perturb 
operator, allowing either to be interoperably invoked. 

• mitl-aocp 
This provides an example application of our proposed Auto- 

mated Open-Closed Principle to automated algorithm configu- 

ration of the Traveling Salesperson Problem over a fixed al- 

gorithm framework. It uses ant-programming as a generative 

hyper-heuristic ( Kocsis & Swan, 2017 ) to automatically config- 

ure a local search framework with components which have 

different state dependencies. Further technical specifics of en- 

abling communal research via extensible algorithm templates 

are described in detail in Swan et al. (2019) . 

• mitl-hyperion 
This provides extensible algorithm templates for several of 

the evolutionary algorithms described in ‘Essentials of Meta- 

heuristics’ ( Luke, 2010 ), as combinatorially instantiated in 

mitl-aocp , above. 
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