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I. INTEGER PROGRAMMING

Prior to describing the concept of integer programming,
we first need to introduce the classical linear programming.
Linear programming is defined as an optimisation method used
to obtain the best solution in a mathematical model whose
formulation is expressed in linear relationships. In other words,
linear programming is an optimisation technique for minimisa-
tion or maximisation of a linear objective function, subject to
linear equality and inequality constraints. Its feasible region
is given by the set of all possible points of an optimisation
problem that satisfy the constraints of the problem (e.g., see
Fig. 1) [1], [2].
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Fig. 1. Feasible Region of a Linear Programming Problem

A formulation example of a linear programming problem is
as follows:

min ¢’z

Ax <b
x>0
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where x are continuous variables, ¢ and b are given vectors,
and A is a given matrix. In this example, the goal is to
minimise the objective function, cTx, with respect to the
constraints, Ax < b and z > 0.

Integer programming is usually considered as an extension
of linear programming where some or all of its variables
are restricted to take integer values. A model is defined
as pure integer programming when all variables must be
integers, whereas a mixed integer programming is a model
where only some of the variables are restricted to integer
variables. In contrast to linear programming problems, integer
programming problems have feasible integer points instead
of a feasible region (see Fig. 2). It should also be noted
that the computational complexity of integer programming
models is greater than linear programming models because
of integer variables and, thus, much more difficult to solve.
Due to this increased complexity, it is usually impractical
to solve large scale real-world problems exactly with integer
programming. Therefore, heuristics are often preferred as an
alternative optimisation method [1], [3]-[5].
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Fig. 2. Feasible Integer Points of an Integer Programming Problem

The formulation of an integer programming problem is
similar to the linear programming problem. For instance, we



can rewrite the previous formulation example to a pure integer
programming problem as follows:

min ¢’z

Ax <)
x>0
T €L

where the only difference, comparing to the previous example,
is that  variables are restricted to integer values.

A very practical and useful variant of integer programming
is the zero-one linear programming (or binary integer pro-
gramming) that is used for problems where all variables must
be binary (either O or 1). The 0-1 variables are widely used to
formulate problems in which decisions are discrete by nature
(Yes/No decisions), and to facilitate the formulation of logical
decisions and statements, e.g., if an ingredient ¢ is used then
a proportion of a; must be respected. Moreover, 0-1 variables
can be used to convert non-linear terms into linear such as the
product of two 0-1 variables. For instance, assume we want to
replace the product a;as with a new 0-1 variable 5. We can
achieve this by introducing the following constraints:

B>ar+ax—1
B<an
B < a

These constraints enforce 8 = 1 only when oy = ag = 1,
otherwise 3 is restricted to 0 if oy, or as, or both are 0.
Another similar use of 0-1 variables is the approximation of
non-linear models as shown in Fig. 3. An integer programming
model can be used to convert a certain type of non-linearity
into linear terms at a cost in the size of the converted model
though [1].
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Fig. 3. A piecewise linear approximation to a non-linear function

Due to these practical properties of the zero-one variables,
binary integer programming models have been extensively

used in numerous applications and problems such as schedul-
ing [6], [7], the travelling salesman problem [8], [9], the knap-
sack problem [10], [11], packing and partitioning problems
[12]-[14], the facility location problem [15], [16], and many
others ranging from networks and graphs to capital investment
problems [17]-[19].

A. Relaxations

Relaxation is a well-known modelling strategy within the
field of mathematical optimisation to approximate difficult
problems by similar problems that are usually easier to solve.
The solution of a relaxed problem provides information about
the original problem. For instance, removing integrality con-
straints from an integer programming problem results in a
relaxed linear programming problem.

Another relaxation method is the Lagrangian relaxation
which allows inequality constraints to be violated. Relaxed
constraints are moved to the objective function and are multi-
plied with a Lagrange multiplier. As a result, a cost is incurred
for each violation of the relaxed constraints. For example,
assume we are given the following linear programming model:

min ¢’z

Ax <b
x>0

To obtain the Lagrangian relaxation of the problem, constraint
Az < bis moved to the objective function and multiplied with
a Lagrange multiplier AT as follows:

min ¢’z 4+ A" (Az — b)
x>0

where AT > 0. Thus, an approximation of the original problem
is achieved in which the objective function is penalised if the
relaxed constraint gets violated [20].

A similar relaxation method to Lagrangian relaxation is the
one introduced in [21]. However, the difference is that in his
method the relaxed constraints are not moved to the objective
function. Instead, new variables are introduced in both the
objective function and the constraints. These variables are used
to represent the exceeded violation amount of a constraint
and the unused amount of a constraint. The work in [21]
described this method as a mixture of a conventional objective
function and a goal programming objective function which can
be formulated as follows:

min ch—l—c/Tu—&—c”Tv
Az +u—v=0">
x>0

where wu indicates the unused amount of the constraint, v
indicates the exceeded amount of the constraint, ¢ " represents
the cost of not fully utilising the constraint, and T represents
the cost of exceeding the constraint.

Apart from approximating difficult problems, relaxation
methods have several additional benefits and uses which are



described next. They can be used to obtain bounds in branch-
and-bound algorithms for integer programming (e.g., [22]) and
to overcome infeasibility issues in mathematical modelling.
Additionally, they enable the handling of complex and soft
constraints, and allow the expansion of the solution space
by setting different weights values. That is, they allow the
exploration of multiple solutions along with trade-offs which is
beneficial for decision-makers as they are presented with more
options. However, relaxation methods have certain drawbacks
as well. They require the judgement of decision-makers upon
selecting the right solution and the relaxed problem may not
converge to the optimal solution of the original problem.

II. HYPER-HEURISTICS

Sometimes, it is impractical to solve a problem exactly
to obtain the optimal solution for various reasons such as
computational complexity, size of the problem, and complex-
ities involved in formulating the problem. In such cases, an
effective alternative method is the implementation of heuristic
techniques which sacrifice optimality to find near-optimal
solutions within a short amount of time.

A well-known heuristic method to solve computationally
hard optimisation problems of combinatorial nature is the local
search algorithm, or also known as neighbourhood search.
Typically, a combinatorial optimisation problem involves an
objective function to minimise, or maximise, and a set of
feasible, or candidate, solutions. The key mechanism of the
local search algorithm is based on a neighbourhood structure,
where a neighbourhood is defined as a set of solutions that are
slightly different compared to a given solution. Local search
algorithms apply local changes to explore neighbourhood
solutions within the space of candidate solutions, or the search
space, until a termination criterion is met [23], [24]. For
instance, in a travelling salesman problem, a neighbourhood
solution is a tour in which the visiting order of two cities is
different. A significant part of heuristic methods is the criterion
used to accept or reject a new solution, which is known as
the move acceptance criterion. A common move acceptance
criterion is the acceptance of the new solution only when it
is better than the previous solution [25]. While local search
algorithms are effective in terms of execution time and solution
quality, they do have a pitfall. That is, they can stuck at a
local optima when the neighbourhood search space is poorly
structured (e.g., see Fig. 4).

Several methods exist to overcome this pitfall such as the
usage of a random restart approach in which the local search
algorithm is applied to multiple random initial solutions.
Hence, this approach increases significantly the search space
and the probability of finding a better local optima [26].
Another method is the implementation of the ruin and recreate
principle where parts of the solution are destroyed and rebuilt
or recreated afterwards [27]. Alternatively, more sophisticated
algorithms may be used instead such as simulated anneal-
ing, genetic algorithms, ant colony optimisation, or hyper-
heuristics which are described next.
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Fig. 4. Local search algorithm stuck at local maxima

Many combinatorial optimisation problems have been
solved by means of hyper-heuristics which can be simply de-
fined as a heuristic to choose heuristics. While hyper-heuristics
were conceptualised in 1960s, they were formally defined in
the early 2000s as a high-level automated search methodol-
ogy for solving computationally hard problems by exploring
the search space of low-level heuristics. Hyper-heuristics are
classified into the following two categories: 1) generation
hyper-heuristics that generate new heuristics, and 2) selection
hyper-heuristics that select and apply a heuristic from a set of
low-level heuristics. In addition, selection hyper-heuristics are
further divided into: 1) constructive hyper-heuristics that build
a solution from scratch, and 2) perturbative hyper-heuristics
that iteratively improve a given complete solution [28]. In
this work, we focus on selection perturbative hyper-heuristics
to which we will simply refer as hyper-heuristics onwards.
A typical framework of a hyper-heuristic usually includes
two sequential steps, the heuristic selection and the move
acceptance (see Fig. 5). While the former step represents a
strategy for selecting and applying a low-level heuristic, the
latter step represents a strategy regarding the acceptance or
rejection of the newly created solution [29].

Hyper-heuristics have become popular due to their advan-
tages over other customised methods. Their major benefit is
that they are not limited to a single problem domain or a
narrow class of problem instances, instead they are problem
independent and are applicable to a wide range of problem
instances [28]-[30]. Additionally, hyper-heuristics are capable
of learning by receiving feedback regarding the performance
of low-level heuristics during the optimisation process. Two
types of learning processes are identified in the literature: the
online learning in which the algorithm directly learns while
solving the problem, and the offfine learning in which the
algorithm learns by solving a set of training instances. Some
recent studies, though, have incorporated a mixture of online
and offline learning [28], [31]. Furthermore, it is relatively easy
to implement hyper-heuristics, compared to other customised
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Fig. 5. A flowchart of the hyper-heuristic framework

methods, as no information is required about the functionality
of low-level heuristics. They only require the number or
content of the low-level heuristics and the type of optimisation
(minimisation or maximisation) [32], [33]. Last but not least,
their purpose is to find an effective method of solving a
problem by exploring the space of low-level heuristics. This is
in contrast to other metaheuristic algorithms which are limited
to finding a good solution by exploring directly the space of
solutions [32], [34].

A. Heuristic Selection Strategies

In this step of the optimisation process, a low-level heuristic
is selected from a set of low-level heuristics and is applied
to the solution iteratively. Note that a low-level heuristic
can be a simple operator, a metaheuristic, or even a hyper-
heuristic. The performance of the algorithm depends heavily
on the selected strategy as some low-level heuristics may
perform better than others at certain stages of the optimisation
process. For instance, low-level heuristics that perform major
changes to the solution are usually more successful at early
stages of optimisation rather than later stages. In addition, the
sequence in which low-level heuristics are applied plays a
crucial role in terms of performance too, because different
solutions are obtained with altered sequences [32]. Heuristic
selection strategies are defined as deterministic when a selec-
tion sequence is predefined, or sfochastic when the selection
depends on a probability distribution or learning mechanism

[28], [29]. Some examples of heuristic selection strategies are
presented next:

e Simple random: A low-level heuristic is randomly se-
lected.

e Greedy: All low-level heuristics are applied and the best
among them is selected at each iteration.

o Reinforcement learning: Each low-level heuristic is as-
signed an initial minimum score which increases or
decreases based on performance. At each iteration, the
low-level heuristic with the highest score is selected [32].

o Tabu search: Low-level heuristics are ranked similarly
to reinforcement learning strategy. Upon solution im-
provement the rank is increased, otherwise the rank is
decreased and the low-level heuristic enters the tabu list
until the solution at hand changes. This strategy selects
the low-level heuristic with the highest rank that is not
included in the tabu list [34].

o Sequence-based selection: In this strategy, low-level
heuristics are selected based on the sequences of low-
level heuristics with the best performance [30].

B. Move Acceptance Strategies

At this stage, the newly obtained solution is evaluated and
is either accepted or rejected based on the selected strategy.
Similarly to heuristic selection strategies, move acceptance
strategies can be defined as deterministic or stochastic. De-
terministic strategies usually accept non-worsening solutions,



while stochastic strategies may accept or reject a solution
according to some probabilistic criterion. Stochastic strategies
may accept worse solutions during optimisation which is
particularly useful for escaping local optima solutions and thus
diversify the search space [28], [29]. A few examples of move
acceptance strategies are the following:

e Only improving: The solution is only accepted if it is
better than the previous.

o Improving and equal: All non-worsening solutions are
accepted.

« Simulated annealing: Solutions are accepted based on the
following probabilistic function:

__AF
P =e aF(1-%)
where Af is the difference in the objective value at
iteration ¢, T is the maximum number of iterations, and
AF is the range of the maximum change in the objective
value after a low-level heuristic is applied [35].

o Record-to-record travel: A worse solution is only ac-
cepted if it is not significantly exceeding the objective
value of the previous solution [36].

« Late acceptance: Objective values are stored in a set of
size L, and a new solution is only accepted if it is better
than the L™ solution [37].

IIT. MATHEURISTICS

The term matheuristic, as the name suggests, refers to an
optimisation method in which ideas and methods are combined
from both mathematical programming and heuristic tech-
niques. [38] provided a general classification of matheuristics
based on the nature of combination. They classified matheuris-
tics into two main categories, namely the collaborative combi-
nations and the integrative combinations. The former category
refers to matheuristics in which exact and heuristic algorithms
are separate parts and exchange information by being exe-
cuted sequentially, intertwined or in parallel, while the latter
category refers to matheuristics in which one technique is
an embedded component of another technique. While [38]
touched on a generic classification of matheuristics, additional
classifications are defined in [39] which are discussed next:

e Decomposition approaches: In this approach, the master
problem is decomposed into smaller and simpler sub-
problems, where each sub-problem is solved by a specific
solution method. Mathematical programming models are
then used to solve some or all sub-problems to optimality
or sub-optimality.

o Improvement heuristics: A heuristic method is used to
obtain a solution which is improved via mathematical
programming models.

o Branch-and-price/column generation-based approaches:
In this approach, the aim is to achieve convergence faster
by modifying the exact method used.

e Relaxation-based approaches: The concept of this ap-
proach is to identify attributes of an exact method that
significantly slow down the convergence and relax them.

From the above classifications, we will focus and elaborate
on decomposition approaches and provide application exam-
ples. Decomposition approaches are specifically useful for
complex and integrated problems. Dividing the master problem
into sub-problems that are handled and solved independently
reduces the complexity of the problem and makes it easier
to obtain a feasible solution for the master problem. In the
context of matheuristics, mathematical models are used to
solve some or all of the sub-problems. In cases of large scale
real-world problems a time limit can be applied to prematurely
stop the exact method and, thus, avoid excessive computational
times. A two-phase approach is a subclass of decomposition
approaches in which the matheuristic algorithm divides the
master problem into two phases that are solved separately [39].
This approach is in line with collaborative combinations as
described in [38]. A few examples of studies that have im-
plemented a two-phase decomposition matheuristic approach
are described next. [40] studied a pickup and delivery problem
involving daily routes assignment of logging trucks in forestry
which was solved in two phases. In the first phase, an exact
model was used to obtain the optimal flow from supply points
to demand points, and transport nodes were created based on
the obtained solution. Next, in phase two, they used a heuristic
method to combine the transport nodes into actual routes.
In the study of [41], a logistic problem arising in disaster
response activities was decomposed into two parts that were
solved separately. In the first part, the authors obtained location
decisions and approximate vehicle routes by solving exactly a
simplified version of the complete mathematical formulation.
Then, in the second part, they implemented an algorithm that
generated pick up and delivery schedule for each vehicle based
on the information obtained from the previous phase, and built
detailed vehicle routes by solving a system of linear equations.
Lastly, [42] studied the school bus routing problem in which
the set of visiting stops needs to be determined, the stop
where each student has to walk to needs to be defined, and
the school bus travelling distance needs to be minimised. The
problem was solved in two phases: in phase one, a heuristic
method was used to solve the routing part of the problem, and
in phase two, an exact model is used to assign students to
stops. Further examples of matheuristic applications including
additional classifications can be found in the survey of [43].
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