
Exact and Hyper-heuristic Methods for Solving the
Conference Scheduling Problem

Yaroslav Pylyavskyy∗, Ahmed Kheiri∗, Peter Jacko∗†
∗Lancaster University, Department of Management Science, Lancaster LA1 4YX, UK

{y.pylyavskyy, a.kheiri, p.jacko}@lancaster.ac.uk
†Berry Consultants, 5 East Saint Helen Street, Abingdon OX14 5EG, UK

Abstract—Academic conferences offer notable benefits to par-
ticipants and promote knowledge advancement. To maximise
these benefits, an efficient schedule is crucial. Due to diverse
constraints and objectives, various mathematical models and
heuristic methods have been developed to meet the unique
needs of different conferences. This paper investigates different
decision-making tools for creating a generic conference scheduler
applicable to a wide range of conferences. We present extended
formulations of previously proposed mathematical models to
handle constraints at the time slot level, and introduce an
approximation model, which is a relaxed version of the previ-
ously proposed exact model, obtained through transformations.
Additionally, we compare the performance of three methods: a
relaxed integer programming model, a decomposed two-phase
matheuristic solution approach, and a selection hyper-heuristic
algorithm on 16 instances. We highlight the benefits and limi-
tations of each method, providing comprehensive computational
results.

Index Terms—scheduling, optimisation, metaheuristic, hyper-
heuristic

I. INTRODUCTION

Conferences are crucial events for academic communities,
offering numerous benefits to participants such as sharing
the latest research, exchanging ideas, receiving feedback,
and networking with peers from diverse backgrounds. To
fully exploit these benefits, an effective schedule is essential.
However, generating such a schedule is challenging due to
numerous preferences and constraints. Traditionally, a group
of organisers manually schedules conferences, which is a time-
consuming and error-prone process often subject to last-minute
changes. Previously, achieving any feasible schedule was
sufficient [1]. Nevertheless, nowadays the focus has shifted
towards optimising the schedule quality.

The conference scheduling problem (CSP) was introduced
in [2] and proved to be NP-hard in [3]. Even though the CSP
was introduced a few decades ago, it has not been studied as
much as related problems such as class and exam scheduling
[1], [4], [5]. There are two primary approaches to CSP based
on constraints and objectives: the Presenter-Based Perspective
(PBP) and the Attender-Based Perspective (ABP) [5]. The PBP
considers specific requests from presenters, such as presenting
on a particular day or time. The ABP focuses on minimising
attendee preference violations, ensuring attendees can attend

This work was supported by the UK Research and Innovation under Grant
EP/V520214/1.

their preferred sessions without conflicts or space shortages
[6]. Some studies adopted a mixed approach, balancing both
presenter and attendee preferences [7]–[10]. A detailed litera-
ture review on conference scheduling can be found in [11].

The main goal of this study is the investigation of dif-
ferent decision support tools for the creation of a generic
conference scheduler applicable to many conferences. In ad-
dition, we compare the performance of the developed decision
support tools and report their benefits and limitations in
Table III. These tools are freely available at https://github.
com/ahmedkheiri/CSPLib and can be used to generate both
high and low level optimised conference schedules in an
autonomous and fully automated manner. A generic solution
approach has been designed to allow the customisation of our
scheduler to fit the needs of different conferences.

II. PROBLEM DESCRIPTION

To clarify the terminology used in this paper due to the
diverse conference terms in CSP literature, we define the
following:

• Submission: A formal event that requires scheduling at a
conference, replacing terms such as paper, presentation,
talk, discussion, and panel.

• Track: A group of submissions with a similar subject,
synonymous with terms such as stream, subject area, and
topic.

• Session: A specific time period of the conference con-
sisting of multiple time slots.

• Time Slot: A fixed, predefined duration available for the
presentation of a submission.

In general, a typical CSP involves scheduling tracks into
sessions and rooms to form the high-level schedule, and
scheduling submissions into sessions, rooms, and time slots
to form the low-level schedule, subject to multiple soft and
hard constraints. Some studies in the literature generate both
high and low-level schedules, whereas others only generate a
high-level schedule, requiring organisers to generate the low-
level schedule. Due to the diverse constraints and objectives of
different conferences, various problem descriptions, objective
functions, and methods have been developed to meet specific
needs. As a result, different mathematical models and heuristic
methods have been designed for particular conferences, and a
method effective for one conference might be unsuitable for
another.

A spreadsheet file is used to store input data, which follows
a specific template with the purpose of providing a generic
approach suitable for many conference scheduling problems.
Our scheduler contains a pool of constraints to select from
and allows weight assignment for each constraint based on
their subjective significance. In addition, the scheduler is also
suitable for hybrid and online conferences where submissions
need to be scheduled in appropriate sessions considering
timezone information. When a CSP is solved using the sched-
uler, an informative solution file is generated which provides
insights regarding the solution quality. The decision maker is
not only able to view a detailed report of violations for each
constraint but also can manually edit the solution and observe
the impact of their changes on solution quality.

III. METHODOLOGY

Different decision support tools, including integer program-
ming, heuristics, and matheuristics are investigated to build
the conference scheduler. All these developed optimisation
methods are included in the conference scheduler allowing
the decision-maker to select which one they wish to use as
some methods may perform better than others depending on
the given CSP.

The first tool extends the integer programming model de-
scribed in [11]. In [11], two integer programming models were
developed to generate high and low-level schedules in a fully
automated manner. The results on real data from five different
conferences and on additional artificial instances demonstrated
the success of the exact models in finding optimal solutions
for almost all instances. The second tool is described in [12]
which is a matheuristic solution approach that consists of two
phases. In phase one, an integer programming model is used to
build the high-level schedule by assigning tracks into sessions
and rooms. Based on this solution, in phase two, the low-
level schedule is created where submissions are allocated into
sessions, rooms, and time slots. Then, a selection perturbative
hyper-heuristic is used to further optimise both levels of the
schedule. This solution approach was compared against an
integrated mathematical model under different time limits on a
set of real and artificial instances. The results showed that the
matheuristic finds near-optimal solutions and finds solutions
for instances where the mathematical model fails to provide
solutions within the one hour time limit. The third tool is
a selection hyper-heuristic algorithm, described in [13]. The
hyper-heuristic method was validated on GECCO 2019 data
and has been used to generate effective schedules for GECCO
conferences from 2020 onwards.

In this study, we present the required modifications in
the formulations presented in [11] to obtain the equivalent
mathematical models with time slots and discuss their per-
formance compared to the original mathematical models. We
also present an approximation model with a simpler, relaxed
objective function which is obtained through transformations
and discuss its performance compared to the exact model with
time slots. Additionally, we compare the performance of all

these methods by solving the benchmark instances from [14],
and discuss the benefits and limitations of each method.

A. Mathematical Models with Time Slots for CSPs

Conference organisers may request some submissions to be
scheduled in a specified order within their track. This is a
constraint that has to be resolved on a time slot level and
cannot be handled by formulations presented in [11]. To form
the submissions ordering constraint, we first need to introduce
a new subset SUo

t and a new parameter ids,ts:

su ∈ SUo
t :The subset of submissions sorted by their

specified scheduling order belonging to track t

ids,ts :The chronological order of time slot ts
belonging to session s

With the new subset and parameter introduced, we can now
form the submissions ordering constraint, Eq. 1, which ensures
that submissions of a given track are scheduled in the desired
specified order.∑

s∈S

∑
r∈R

∑
ts∈T Ss

ids,ts ×X
(t,su)
s,r,ts + 1 ≤∑

s∈S

∑
r∈R

∑
ts∈T Ss

ids,ts ×X
(t,su+1)
s,r,ts

∀ t ∈ T ,∀ su ∈ SUo
t \ {SUo

t }

(1)

1) Exact Model (IP1): To obtain the equivalent exact model
of [11] with time slots, we need to proceed with the following
modifications. Firstly, we need to change X

(t,su)
s,r decision

variable as follows:

X
(t,su)
s,r,ts ∈ {0, 1} : 1 if submission (t, su) is scheduled in

session s, room r, and time slot ts; 0 if not

Next, we need to add the set of constraints Eq. 2 which
ensures that each time slot either gets assigned one submission
or remains empty.∑
(t,su)∈T SU

X
(t,su)
s,r,ts ≤ 1 ∀ s ∈ S,∀ r ∈ R,∀ ts ∈ T Ss (2)

Additionally, we modify constraints Eq. 1, Eq. 2, Eq. 6,
Eq. 7, and Eq. 10 of [11] as follows:∑
s∈S

∑
r∈R

∑
ts∈T Ss

X
(t,su)
s,r,ts = 1 ∀ (t, su) ∈ T SU

Mp
s

∑
ts∈T Ss

X
(t,su)
s,r,ts +

∑
r′∈R\{r}

∑
ts′∈T Ss

∑
(t′,su′)∈T SUp

X
(t′,su′)
s,r′,ts′ ≤ Mp

s

∀ s ∈ S,∀ r ∈ R,

∀ p ∈ P,∀ (t, su) ∈ T SUp∑
ts∈T Ss

∑
su∈SUt

n(t,su)X
(t,su)
s,r,ts − |T Ss|Zt

s,r ≤ 0

∀ s ∈ S,∀ r ∈ R,∀ t ∈ T
(3)

∑
ts∈T Ss

∑
su∈SUt

X
(t,su)
s,r,ts − Zt

s,r ≥ 0 ∀ s ∈ S,∀ r ∈ R,∀ t ∈ T

X
(t,su)
s,r,ts ∈ {0, 1} ∀ t ∈ T ,∀ su ∈ SU t,

∀ s ∈ S,∀ r ∈ R,∀ ts ∈ T Ss

Then, we need to change the objective function of the exact
model, Eq. 11 of [11], as follows:

min
∑
s∈S

∑
r∈R

∑
t∈T

(wαα
t
s + wββ

t
r + wγγs,r)Z

t
s,r

+
∑
s∈S

∑
r∈R

∑
ts∈T Ss

∑
(t,su)∈T SU

(wδδ
(t,su)
s

+wϵϵ
(t,su)
s + wζζ

(t,su)
r)X

(t,su)
s,r,ts

(4)

2) Extended Model (IP2): The equivalent extended model
of [11] with time slots is obtained by modifying constraints
Eq. 14 and the objective function Eq. 20 of [11] as follows:

Ma
s

∑
ts∈T Ss

X
(t,su)
s,r,ts +

∑
r′∈R\{r}

∑
ts′∈T Ss

∑
(t′,su′)∈T SUa

X
(t′,su′)
s,r′,ts′

≤ Ma
s ∀ s ∈ S,∀ r ∈ R,

∀ a ∈ A,∀ (t, su) ∈ T SUa

min
∑
s∈S

∑
r∈R

∑
t∈T

(wαα
t
s + wββ

t
r + wγγs,r)Z

t
s,r

+
∑
s∈S

∑
r∈R

∑
ts∈T Ss

∑
(t,su)∈T SU

(wδδ
(t,su)
s

+wϵϵ
(t,su)
s + wζζ

(t,su)
r)X

(t,su)
s,r,ts

−πK ×
∑
s∈S

∑
r∈R

∑
t∈T

Kt
s,r

3) Approximation Model (IP3): We can relax the objective
function of the exact model, Eq. (4), to create an approxima-
tion model by replacing Zt

s,r variables with X
(t,su)
s,r,ts variables

through transformations which we present next. To create the
objective function of the approximation model, we get Eq. (3)
and proceed with the following steps:∑

ts∈T Ss

∑
su∈SUt

n(t,su)X
(t,su)
s,r,ts − |T Ss|Zt

s,r ≤ 0

∀ s ∈ S,∀ r ∈ R,∀ t ∈ T

∑
ts∈T Ss

∑
su∈SUt

n(t,su)X
(t,su)
s,r,ts ≤ |T Ss|Zt

s,r

∀ s ∈ S,∀ r ∈ R,∀ t ∈ T

∑
ts∈T Ss

∑
su∈SUt

n(t,su)

|T Ss|
X

(t,su)
s,r,ts ≤ Zt

s,r

∀ s ∈ S,∀ r ∈ R,∀ t ∈ T

∑
ts∈T Ss

∑
su∈SUt

n(t,su)(wααt
s+wββ

t
r+wγγs,r)

|T Ss|
X

(t,su)
s,r,ts ≤

(wαα
t
s + wββ

t
r + wγγs,r)Z

t
s,r ∀ s ∈ S,∀ r ∈ R,∀ t ∈ T

We sum over sessions, rooms, and tracks to get the following
inequality: ∑

s∈S

∑
r∈R

∑
ts∈T Ss

∑
t∈T

∑
su∈SUt

X
(t,su)
s,r,ts

|T Ss|
×

n(t,su)(wαα
t
s + wββ

t
r + wγγs,r)

≤
∑
s∈S

∑
r∈R

∑
t∈T

(wαα
t
s + wββ

t
r + wγγs,r)Z

t
s,r

Lastly, we replace
∑

t∈T
∑

su∈SUt
with

∑
(t,su)∈T SU in the

left hand side of the inequality:∑
s∈S

∑
r∈R

∑
ts∈T Ss

∑
(t,su)∈T SU

X
(t,su)
s,r,ts

|T Ss|
×

n(t,su)(wαα
t
s + wββ

t
r + wγγs,r)

≤
∑
s∈S

∑
r∈R

∑
t∈T

(wαα
t
s + wββ

t
r + wγγs,r)Z

t
s,r (5)

From Eq. (5), we replace the Zt
s,r variables in Eq. (4) and

obtain the following objective for the approximation model:

min
∑
s∈S

∑
r∈R

∑
ts∈T Ss

∑
(t,su)∈T SU

ω
(t,su)
s,r,ts X

(t,su)
s,r,ts

where ω
(t,su)
s,r,ts =

n(t,su)(wααt
s+wββ

t
r+wγγs,r)

|T Ss| + wδδ
(t,su)
s +

wϵϵ
(t,su)
s + wζζ

(t,su)
r .

IV. COMPUTATIONAL RESULTS

The results in this section were generated on an i7-11370H
CPU Intel Processor with 8 cores at 3.30 GHz with 16.00 GB
RAM. We used Python 3.8.3 and Gurobi 9.5.0. In Table I,
we present the computational results and observe that the size
of IP1 is significantly larger compared to Table 3 of [11].
The IP1 replicated the results of the exact model in [11]
for some instances but with significantly worse computational
times, and was infeasible for the OR60F instance due to
the submissions ordering constraints, Eq. 1. Additionally, IP1
failed to find solutions within time limit for instances OR60F2
and OR60F3.

We observe that the IP2 replicated the results of the ex-
tended model presented in [11] for N2OR, GECCO20, and
GECCO21 instances at worse computational times compared
to Table 6 of [11]. It also found a slightly worse objective for
GECCO19 instance and failed to find solutions for OR60F2
and OR60F3 within the time limit.

Similar to IP2, the objective values of IP3 have been
computed through evaluation functions in order to present the
objective value of IP1. The results of IP3 compared to IP1
reveal that the objective of IP1 was replicated in all instances
except for GECCO19 for which a slightly worse objective was
found. Moreover, IP3 achieved a better computational time
for GECCO20 and GECCO21 instances but also failed to find
solutions for OR60F2 and OR60F3.

Overall, the presented models with time slots managed to
replicate the results of the models presented in [11] for some
instances. The computational times were significantly worse,

TABLE I
IP1, IP2 AND IP3 RESULTS: OBJECTIVE INDICATES THE AGGREGATION OF PENALTIES CAUSED BY VIOLATIONS OF SOFT CONSTRAINTS, GAP INDICATES
THE RELATIVE GAP BETWEEN THE TWO OBJECTIVE BOUNDS, AND TIME INDICATES THE REQUIRED TIME FOR THE SOLVER TO TERMINATE IN SECONDS.

N/A INDICATES THE VALUE IS NOT AVAILABLE.

IP1 IP2 IP3

Instance Variables Constraints Objective Gap (%) Time (s) Variables Constraints Objective Gap (%) Time (s) Variables Constraints Objective Time (s)

N2OR 1,420 387 0 0.000 0.3 1,516 691 1 0.000 1.2 1,420 387 0 0.3
GECCO19 94,960 27,361 1,000,010 0.001 3,600.0 98,440 39,400 2,000,080 0.001 3,600.0 94,960 27,361 1,000,020 3,600.0
GECCO20 36,928 6,604 6,110 0.000 420.0 38,080 10,333 7,750 0.000 3,274.6 36,928 6,604 6,110 159.5
GECCO21 28,008 4,993 11,130 0.000 98.0 29,088 9,805 11,130 0.000 292.0 28,008 4,993 11,130 56.8
OR60 190,923 41,540 Infeasible N/A 6.6 198,168 66,602 Infeasible N/A 6.0 190,923 41,540 Infeasible 6.6
OR60F 163,323 31,707 Infeasible N/A 2,289.2 170,568 53,442 Infeasible N/A 3,600.0 163,323 31,707 Infeasible 2,224.0
OR60F2 654,764 79,023 N/A N/A 3,600.0 679,604 174,776 N/A N/A 3,600.0 654,764 79,023 N/A 3,600.0
OR60F3 2,740,128 176,470 N/A N/A 3,600.0 2,791,464 353,271 N/A N/A 3,600.0 2,740,128 176,470 N/A 3,600.0

TABLE II
THE PERFORMANCE OF IP4, MATHEURISTIC (MH), AND

HYPER-HEURISTIC (HH). BEST SOLUTIONS ARE HIGHLIGHTED IN BOLD.

Instance IP4 MH HH

GECCO19 98 49 114
GECCO20 5,784 3,895 4,695
GECCO20 Poster 0 0 0
GECCO20 Workshop 72,825 76,627 78,126
GECCO21 221 146 153
GECCO21 Workshop 41,774 11,519 12,053
GECCO22 14,011,954 5,681 2,369
GECCO22 Workshop 22,974 1,920 4,045
GECCO23 21,030,737 3,001,684 5,011,086
GECCO23 Workshop 1,081,310 145 20,151
ISF22 N/A 572 110,863
N2OR 1 1 1
OR60 104,210 43,577 35,477
OR60F 34,069 13,719 10,310
OR60F2 78,633 34,267 51,364
OR60F3 N/A 83,136 132,323

compared to the models in [11], due to the increased size of
the models, which makes them impractical for larger instances
such as OR60F2 and OR60F3. However, they seem to be
suitable for conferences that have similar size to N2OR and
GECCO which involve constraints that need to be resolved on
a time slot level. Lastly, it should be noted that the models
presented in [11] should be preferred over the models with
time slots for conference scheduling problems including only
constraints that need to be addressed on a session level.

A. Performance Comparison of Different Methods for CSPs

In this section, we compare the performance of different
methods by solving the benchmark instances and using the
weights from [14]. To make the methods comparable, we
considered IP2 from Section III-A2 and relaxed certain hard
constraints as in [12], which we refer to as IP4. Specifically,
the relaxed constraints are the following: submissions order-
ing, parallel tracks, number of rooms per track, and similar
tracks. For the remaining two methods, the matheuristic and
the hyper-heuristic, no modifications were needed. Each in-
stance was solved with a time limit of one hour for each
method and the results are presented in Table II.

By observing Table II, we notice that the matheuristic
method had the best performance overall finding the best solu-
tions in 10 out of 16 instances. The next best performance was

achieved by the hyper-heuristic method which found the best
solutions in 3 out of 16 instances, followed by IP4 which only
found the best solution for the GECCO20 Workshop instance,
but it failed to find a solution within the time limit for ISF22
and OR60F3. All methods successfully found the optimal
solution for GECCO20 Poster and N2OR instances. In the
next paragraphs, some key takeaways from this experiment are
discussed including benefits and limitations of each method.

The integer programming method has several benefits com-
pared to the other methods. First of all, it is mostly appropriate
for instances involving only constraints that needs to be
resolved on a session level and for instances where hard
constraints can be satisfied (e.g., GECCO20 Poster, N2OR).
In this case, the models presented in [11] can be used which
are significantly smaller in size compared to mathematical
models with time slots and, thus, much faster to solve. In
addition, this method is ideal for small conferences with few
constraints and it may achieve proven optimal solutions given
that the model does not need to be relaxed. On the other
hand, the integer programming has several limitations too. It
is slow for instances involving constraints that need to be
resolved on a time slot level and, sometimes, it may fail
to return a solution (e.g., ISF22). Another limitation is that
for instances where hard constraints cannot be satisfied, the
model needs to be relaxed and, hence, the final solution is not
guaranteed to be optimal. Lastly, this method is unsuitable for
large scale instances due to the increased size of the model
(e.g., OR60F3).

The matheuristic and hyper-heuristic methods have common
benefits over the mathematical models. Both methods achieve
decent solutions and can handle numerous constraints of both
types, time slot and session level. Additionally, both methods
always return a solution and they are suitable for conferences
of all sizes including large scale instances. Moreover, the
matheuristic method finds good solutions faster than the hyper-
heuristic, but both methods due to the heuristic nature are not
guaranteed to find optimal solutions.

A summary of the benefits and drawbacks of each method
is presented in Table III. Overall, the integer programming
method is suitable for small to medium size conferences where
hard constraints can be satisfied and need to be resolved
on a session level. The matheuristic and the hyper-heuristic
methods are suitable for all conferences of any size and for

TABLE III
BENEFITS AND DRAWBACKS OF EACH METHOD

Method Benefits Drawbacks

Integer Programming Optimal solutions. May fail to return solution.
Best for session level constraints. Slow for time slot level constraints.
Best for small to medium conferences with few constraints. Unsuitable for large scale instances.
Best for instances where hard constraints can be satisfied. Commercial software licence required.

Needs to be relaxed if hard constraints cannot be satisfied resulting
in sub-optimal solutions.

Matheuristic Fast and Decent solutions.
Always finds solutions.
Handles numerous constraints. Sub-optimal solutions.
Suitable for both session and time slot level constraints. Commercial software licence required.
Suitable for conferences of any size including large scale instances.

Hyper-heuristic Decent solutions.
Always finds solutions.
Does not require commercial software licence.
Handles numerous constraints. Optimality is not guranteed.
Suitable for both session and time slot level constraints. Slower than Matheuristic.
Suitable for conferences of any size including large scale instances.

any type of constraints including both time slot and session
level. Lastly, the matheuristic method is faster in finding decent
solutions, compared to the hyper-heuristic, which allows the
exploration of additional alternative solutions within a short
amount of time.

V. CONCLUSION

This work is concerned with the optimisation of the confer-
ence scheduling problem. In this study, we presented extended
formulations of mathematical models which are suitable for
constraints that need to be resolved on time slot level (IP1,
IP2). Moreover, we presented an approximation model (IP3)
with a simpler, relaxed objective function which is obtained
through transformations, and tested all the mathematical mod-
els on a set of real and artificial instances. The mathematical
models with time slots managed to replicate the results of the
models presented in [11] for some instances, but at signifi-
cantly worse computational times due to their increased size.
In addition, we compared the performance of three different
methods based on exact (IP4), matheuristic and hyper-heuristic
techniques by solving the benchmark instances (available at
[14]) to explore the benefits and limitations of each method.
We observed that the matheuristic had the best performance
overall finding better solutions than the other methods in 10
out of 16 instances. Overall, the integer programming method
is suitable for certain conferences with specific characteristics,
while the matheuristic and the hyper-heuristic methods are
suitable for all conferences of any size and for any type
of constraints including both time slot and session level. A
potential future work could include the exploration of the
characteristics that make an instance harder to solve compared
to others. For example, ISF22 instance is much harder to solve
exactly in comparison to other instances of similar size. This
might be caused by the limited number of available time slots,
however, other characteristics could also play a vital role.
Another future direction could explore the conference schedul-
ing problem with more scheduling freedom where conference
organisers could allow certain submissions to be flexible and
provide alternative eligible tracks for that submissions. Lastly,

conference organisers could allow for changes in the structure
of the schedule by providing different options regarding the
number of sessions, and a range of time slots for sessions.

REFERENCES

[1] S. E. Sampson, “Practical implications of preference-based conference
scheduling,” Production and Operations Management, vol. 13, no. 3,
pp. 205–215, 2004.

[2] R. W. Eglese and G. K. Rand, “Conference seminar timetabling,”
Journal of the Operational Research Society, vol. 38, no. 7, pp. 591–598,
1987.

[3] J. Quesnelle and D. Steffy, “Scheduling a conference to minimize
attendee preference conflicts,” in Proceedings of the 7th multidisci-
plinary international conference on scheduling: theory and applications
(MISTA), 2015, pp. 379–392.

[4] S. E. Sampson and E. N. Weiss, “Designing conferences to improve
resource utilization and participant satisfaction,” Journal of the Opera-
tional Research Society, vol. 47, no. 2, pp. 297–314, 1996.

[5] G. M. Thompson, “Improving conferences through session scheduling,”
Cornell Hotel and Restaurant Administration Quarterly, vol. 43, no. 3,
pp. 71–76, 2002.

[6] F. Zulkipli, H. Ibrahim, and A. M. Benjamin, “Optimization capacity
planning problem on conference scheduling,” in 2013 IEEE Business
Engineering and Industrial Applications Colloquium (BEIAC), 2013, pp.
911–915.

[7] M. G. Nicholls, “A small-to-medium-sized conference scheduling
heuristic incorporating presenter and limited attendee preferences,” Jour-
nal of the Operational Research Society, vol. 58, no. 3, pp. 301–308,
2007.

[8] T. Stidsen, D. Pisinger, and D. Vigo, “Scheduling EURO-k conferences,”
European Journal of Operational Research, vol. 270, no. 3, pp. 1138–
1147, 2018.

[9] B. Vangerven, A. M. Ficker, D. R. Goossens, W. Passchyn, F. C.
Spieksma, and G. J. Woeginger, “Conference scheduling — a personal-
ized approach,” Omega, vol. 81, pp. 38–47, 2018.

[10] F. Riquelme, E. Montero, L. Pérez-Cáceres, and N. Rojas-Morales,
“A track-based conference scheduling problem,” Mathematics, vol. 10,
no. 21, 2022.

[11] Y. Pylyavskyy, P. Jacko, and A. Kheiri, “A generic approach to con-
ference scheduling with integer programming,” European Journal of
Operational Research, vol. 317, no. 2, pp. 487–499, 2024.

[12] Y. Pylyavskyy, A. Kheiri, and P. Jacko, “A two-phase matheuristic
approach to conference scheduling problems,” 2024, in review.

[13] A. Kheiri, Y. Pylyavskyy, and P. Jacko, “Efficient scheduling of gecco
conferences using hyper-heuristic algorithms,” in Proceedings of the
Genetic and Evolutionary Computation Conference Companion, ser.
GECCO ’24 Companion. New York, NY, USA: Association for
Computing Machinery, 2024, pp. 1732–1737.

[14] ——, “Csplib - a benchmark library for conference scheduling prob-
lems,” 2024, in review.

