
A Monte Carlo Tree Search for the Optimisation of
Flight Connections

Arnaud Da Silva∗, Ahmed Kheiri∗
∗Lancaster University, Department of Management Science, Lancaster LA1 4YX, UK

{a.dasilva, a.kheiri}@lancaster.ac.uk

Abstract—In 2017, Kiwi.com proposed the Travelling Salesman
Problem 2.0. Despite some similarities with the classic Travelling
Salesman Problem (TSP), the problem is more complex. It
can be characterised as an asymmetric, time-constrained and
generalised TSP. Moreover, infeasibility further complicates the
challenge, as no flights may be available between certain airports
on specific days. Exact methods often fail in solving these
NP-Hard problems. Therefore, alternative approaches, such as
heuristics, are typically favoured. A Monte Carlo Tree Search
(MCTS) is implemented to tackle Kiwi’s problem, an algorithm
traditionally used in board games but adapted here for air
travel optimisation. The MCTS has been chosen for its proven
effectiveness in handling complex and high-dimensional search
spaces.

Index Terms—Optimisation, Travelling Salesman Problem,
Monte Carlo Tree Search, Heuristic Design.

I. INTRODUCTION

The number of flight connections continue to grow each
year [1], with over 38 million flights scheduled in 2023. This
increasing volume poses a significant challenge for travellers
trying to find the best and cheapest flight connections for their
specific journey, particularly when multiple cities are involved.
As a result, travel agencies have implemented online trip
planner algorithms to help travellers find flights that meet their
requirements. Examples of such platforms include Google
Flights, OpenFlights.org, Skyscanner, Kayak, and Kiwi.com.

These agencies have introduced various challenges to de-
velop more powerful trip planner algorithms. For example,
as noted in [2], OpenFlights.org launched the Air Travelling
Salesman Project. Similarly, in 2017, Kiwi.com initiated the
Travelling Salesman Challenge, which led to the development
of their current algorithm. In 2018, Kiwi.com introduced a new
challenge, the Travelling Salesman Problem 2.0, which is the
focus of this study. Despite the large number of participants
in these challenges, there is limited literature on the methods
employed. The winning team used a breadth-first search (BFS)
algorithm [3], while other participants applied heuristics such
as simulated annealing, genetic algorithms, and reinforcement
learning. Only two papers have been published on these
approaches [2], [4], focusing on local search and reinforcement
learning. The scarcity of research inspired our decision to
implement a novel solution using Monte Carlo Tree Search
(MCTS) to tackle the problem.

The problem at hand is a variant of the well-known Trav-
elling Salesman Problem (TSP). It can be described as a
generalised, asymmetric, and time-dependent TSP. A traveller

must visit a set of areas, one per day, starting from a given
airport, with various flight connections available between these
airports on different days. The objective is to determine the
cheapest flight route that allows the traveller to return to
the starting location. Due to the large number of possible
routes, solving this problem by exhaustively exploring every
potential solution is infeasible. Therefore, a heuristic approach
is employed.

II. PROBLEM DESCRIPTION

Kiwi’s traveller plans to visit N different areas over N days.
Let A denote the set of areas the traveller intends to visit:
A = {A1, A2, . . . , AN}, where each Aj is a set of airports
within area j, represented as: Aj = {aj,1, aj,2, . . . , aj,kj}.
Here, aj,kj

represents the airports in area j, and kj is the
number of airports in area j. The traveller must visit one area
per day. They have to leave each area to visit a new one by
departing from the same airport they arrived at. The journey
starts from a known airport, and the traveller must complete
the trip by returning to the starting area, though not necessarily
to the starting airport. There are flight connections between
different airports, with varying prices depending on the day
of travel. Let cdij represent the cost to travel from city i to
city j on day d. It is not necessarily true that cdij = cdji, nor
that cd1

ij = cd2
ij if d1 ̸= d2. Moreover, ∃d such that cdij = ∞,

meaning there is no flight connection between city i and city
j on day d. The aim of the problem is to find the cheapest
route for the traveller’s journey. The problem has not been
mathematically defined in previous research. Therefore, we
can formulate the problem as follows:

• A = {1, 2, . . . , N}: Set of areas.
• Aj = {aj,1, aj,2, . . . , aj,kj}: Set of airports in area j ∈

A.
• D = {1, 2, . . . , N}: Set of days.
• Ud ⊆ A: Set of areas that have not been visited by the

end of day d.

Parameters and Variables

• cdij : Cost to travel from airport i to airport j on day d ∈ D.
• xd

ij : Binary variable, equal to 1 if the traveller flies from
airport i to airport j on day d, and 0 otherwise.

• vdj : Binary variable, equal to 1 if area j is visited on day
d, and 0 otherwise.



Objective Function

The goal is to minimise the total travel cost of the journey:

min

(
N−1∑
d=2

∑
i∈

⋃N−1
k=2 Ak

∑
j∈

⋃N
k=3 Ak

cdijx
d
ij

+
∑
j∈A1

c1S0,jx
1
S0,j +

∑
i∈AN

∑
j∈A1

cNijx
N
ij

)
(1)

Constraints

• Starting from the known starting airport S0 and taking an
existing flight connection:∑

j∈A1

x1
S0,j = 1 and ∀d ∈ D, cdS0,j ∈ R+∗

• Visit exactly one airport in each area each day:∑
i∈Ad

∑
j∈Ad+1

xd
ij = 1 ∀d ∈ {1, 2, . . . , N − 1}

• Ensure the traveller departs from the same airport they
arrived at the previous day:

∑
k∈Ad

xd
ik =

∑
k∈Ad−1

xd−1
ki ∀i ∈

N⋃
j=1

Aj ,∀d ∈ {2, 3, . . . , N}

• Return to an airport in the starting area on the final day
with an existing flight connection:∑
i∈AN

∑
j∈A1

xN
ij = 1 and ∀(i, j) ∈ AN ×A1, c

N
ij ∈ R+∗

• Ensure each area is visited exactly once:∑
d∈D

vdj = 1 ∀j ∈ A

• Update the unvisited list:

vdj = 1 =⇒ j /∈ Ud ∀j ∈ A,∀d ∈ D

• Ensure a flight on day d between airports i and j exists
only if the cost exists and area j is unvisited on day d:

xd
ij ≤ cdij · vdj ∀i, j ∈

 N⋃
j=1

Aj

2

,∀d ∈ D

xd
ij ≤ vdj ∀j ∈

N⋃
j=1

Aj ,∀d ∈ D

• Binary variable constraints:

xd
ij ∈ {0, 1} ∀(i, j) ∈

 N⋃
j=1

Aj

2

,∀d ∈ D

vdj ∈ {0, 1} ∀j ∈ A,∀d ∈ D

III. METHODOLOGY

A. Selection Policy

The selection phase of the Monte Carlo Tree Search
(MCTS) algorithm uses the Upper Confidence Bound (UCB)
strategy to balance exploration and exploitation. This involves
selecting the node that minimises the UCB or the UCB1-Tuned
score, calculated as: UCB = Xi + Cp

√
2 lnN
ni

UCB1T = Xi +

√√√√ lnN

ni
min

(
1

4
,Var(Xi) +

√
2 lnN

ni

)
Where:
• Xi: The average reward of node i.
• N : The total number of visits to the root node.
• ni: The number of visits to node i.
• Cp: Exploration parameter.
• Var(Xi): The variance of the rewards at node i, repre-

senting the variability of the rewards.
The UCB balances exploration with the coefficient Cp,

where empirically Cp =
√
2. The term Cp

√
2 lnN
ni

adds a
confidence interval to the average reward, which encourages
exploring less-visited nodes when Cp > 0. When Cp = 0, the
tree search explores less but exploits more of the known part
that appears promising for the problem in the tree.

The UCB1-Tuned balances its exploration with
min

(
1
4 ,Var(Xi) +

√
2 lnN
ni

)
, making UCB1-Tuned more

adaptable to environments with varying reward distributions.
The Cp coefficient can also be considered in UCB1-Tuned’s
formula. Hence, in stochastic environments, UCB1-Tuned is
more likely to exhibit better overall performance.

B. Simulation Policy

When a simulation is run from a given node in the tree, the
goal is to find a feasible combination of airports that could
be a solution to our problem. Three simulation policies have
been implemented and are used to select the actions needed
to reach a leaf node in the tree:

• Random policy: This policy selects a random action from
the set of available actions, introducing variability and
exploration in the simulation process.

• Greedy policy: This policy selects the action that corre-
sponds to the cheapest available flight connection, thus
prioritising cost minimisation at each step.

• Tolerance policy (with coefficient c): This policy selects
an action randomly from a subset of actions that are
within a certain tolerance level c of the minimum cost
action. This policy introduces a more balanced approach
than the random and greedy policies.

C. Expansion Policy

When expanding a node, it is theoretically possible to ex-
pand all available child nodes. However, in practice, this can be
computationally expensive and time-consuming, particularly
in problems with a large number of possible actions. To



address this, heuristic approaches often involve compromises
that enhance the efficiency of the search process by selectively
expanding certain nodes rather than all possible ones.

• Top-K policy: This policy expands the nodes correspond-
ing to the cheapest flight connections available. It sorts
all possible actions based on their associated costs and
selects the top k actions with the lowest costs, where k
is regulated by the allowed number of children Nc.

• Ratio policy: This policy takes a more balanced approach
by combining the selection of the best actions with a
degree of randomness. First, it calculates the number of
top actions to select based on a predefined ratio, c ∈ [0, 1],
which reflects the proportion of Top-K actions within the
allowed Nc. After selecting these best actions, the policy
randomly selects (1−c)×Nc actions from the remaining
pool to reach the desired number of children.

A MCT S function can be defined. The function param-
eters include Sp(Cp) for the selection policy, Ep(c) for the
expansion policy, Rp for the rollout policy, and Nc, defining
the maximum number of children expanded per node.

D. Parallelisation

In computer science, parallelisation is a technique that
divides a number of tasks into sub-tasks that can be indepen-
dently and simultaneously run on multiple cores of a computer.
Due to the nature of MCTS and its four phases, this algorithm
is a good candidate for parallelisation. For instance, after
selecting a node to explore, rather than conducting a single
simulation based on one simulation policy, you can either run
simulations using multiple different simulation policies and
select the best outcome, or perform multiple simulations using
the same policy (if it is stochastic). This is known as leaf
parallelisation [5].

IV. COMPUTATIONAL RESULTS

The results presented in this section were generated using
an Intel i7-10700 CPU with 8 cores at 3.30 GHz, and 16 GB
of RAM. We utilised Python 3.10 within VS Code (version
1.92.2). For further details, please refer to § GitHub and
§ GitHub. Simulations for each considered instance were
conducted, testing various parameter combinations in the grid
search defined in Table I. One challenge encountered was the
computational budget when using Python. As a result, the size
of the grid search for the more complex instances was reduced,
as shown in Table I.

TABLE I
GRID SEARCH

(I1, . . . , I6) (I7, I8)

selection policy top k, ratio k top k, ratio k
simulation policy random, greedy, tolerance greedy
selection policy UCB, UCB1T UCB

C p 0, 1.4, 2.8 1.4
N c 5, 10, 15 10

Ratio c 0, .3, .5, .8, 1 .5
N° simulations 10 10

After running the simulations with the grid search param-
eters defined in Table I, we compared our results with the
best known solutions, as presented in Table II [2]. Note that
only a subset of problem instances was considered due to the
computational complexity and time constraints associated with
evaluating all possible configurations for larger instances.

TABLE II
BEST RESULTS VS STATE OF THE ART. SOLUTIONS WERE FOUND FOR

INSTANCES I1 , I2 , I3 , I4 , I7 , AND I8

Instance Best
known

Best
found

Gap (%) Mean Std

I1 1396 1396 0 1396 0
I2 1498 1498 0 1498 0
I3 7672 7672 0 7672 0
I4 13952 15361 10.1 15361 0
I5 690 - - - -
I6 2159 - - - -
I7 30937 31924 3.19 30937 0
I8 4052 4037 -0.52 4052 0

For instances I1, I2, and I3, solutions were found and
the various simulations were carried out successfully. Con-
sequently, we investigated the influence of the parameters
on the MCT S function and the final solution. However,
for instance I4, only a few parameterisations of the MCT S
algorithm were successful in finding a solution. Specifically,
the UCB1T selection policy combined with the tolerance or
random simulation policies resulted in trees that were too large
to find solutions within a reasonable time frame.

Fig. 1. Effect of Cp on the Number of Selections

Analysis on Cp: Figure 1 presents box plots illustrating
the relationship between the exploration constant Cp and
the number of selection phases under the UCB and UCB1T
selection policies:

• Cp = 0 leads to identical performance: When Cp = 0,
the UCB and UCB1T selection policies are equivalent,
resulting in identical decision-making during MCTS.

• Higher Cp values lead to faster convergence for UCB:
As Cp increases from 0.0 to 2.82, the median number of
selection phases under the UCB policy decreases.

• UCB1T encourages more exploration: UCB1T con-
sistently results in a higher number of selection phases
compared to UCB, particularly at higher Cp values.
This aligns with UCB1T’s design to promote broader
exploration before converging.

https://github.com/adasilva33/DASA_Kiwi_TSP_Challenge_2
https://github.com/ahmedkheiri//DASA_Kiwi_TSP_Challenge_2


While UCB1T may require more time to converge, it gener-
ally explores the search tree more effectively, leading to better
overall performance. One can notice that Cp’s correlation with
the UCB1T selection policy for I3 is low.

Analysis of Expansion ratio c: When comparing the re-
lationship between the expansion ratio (the proportion of
expanded child nodes that have the cheapest flight connection
among the chosen number of children) and the time required
to find a solution for the UCB and UCB1T policies, several
conclusions can be drawn:

• UCB finds solutions faster than UCB1T: Across all
expansion ratio values, the UCB policy consistently finds
solutions quicker than UCB1T. This suggests that UCB,
being less aggressive in exploration, converges on solu-
tions faster.

• Higher ratios lead to faster convergence: For both poli-
cies, the time to find a solution generally decreases as the
expansion ratio increases. This indicates a more efficient
search process when expanded nodes are less randomly
chosen from the set of available actions. However, for
more complex instances, maintaining a ratio r ∈ [0.3, 0.7]
is crucial to avoid getting stuck in potential leaf nodes.

Finally, the UCB policy exhibits a stronger correlation with
the expansion ratio compared to UCB1T, as shown in Figure
2. Despite this correlation, UCB’s overall performance is
inferior to that of UCB1T. This is because UCB relies more
heavily on exploitation, whereas UCB1T, though slower to
converge, achieves better results by balancing exploration and
exploitation more effectively.

Fig. 2. Expansion ratio vs Total cost

Fig. 3. Simulation performance for Instance 3

Analysis of Simulation Performances: Figure 3 presents box
plots for the different simulation policies applied to Instance
3. For each day, the distribution of the simulated outcomes
is plotted according to the simulation policy used. Coloured
curves indicate the minimum and maximum values of these
distributions, while dashed lines represent the medians.

In Figure 3, the greedy simulation policy demonstrates supe-
rior performance, as evidenced by lower minimum, maximum,
and median values of the simulation outcomes across all days.
The pronounced convergence of the random policy reflects the
inherent randomness of this approach. Additionally, for the
greedy and tolerance policies, the minimum value is nearly
reached by the second or third day of simulation. This sug-
gests that a well-calibrated set of parameters for the MCT S
algorithm should ideally converge towards the minimum cost
observed during the simulations. If the algorithm does not
achieve this, it indicates that the MCT S parameterisation
may be suboptimal. Figure 5 illustrates the distributions of
simulated outcomes for a misparameterised MCT S instance
(I4).

In Figure 4, the median distributions for different scenarios
are plotted. The analysis reveals that values of c too close to
1 do not, on average, converge to the minimum-cost solution.
In contrast, lower values of c tend to guide the tree search
more effectively during the first days of simulations. This
is crucial because it helps avoid excessive expansion of the
search tree, which can lead to inefficient and time-consuming
MCTS processes.

Fig. 4. Simulation performance vs Expansion ratio - Instance 3

These conclusions apply to smaller instances. However,
for instance I4, as shown in Figure 5, having c = 0 with
a greedy selection policy proves inefficient. The search tree
diverges from the minimum simulated cost, resulting in the
tree search failing to find a solution within 10 minutes. Based
on the median comparison, c = 1 emerges as a more optimal
parameter for guiding the tree search in this case.

The MCTS function struggled to effectively search the tree
for instances I5 and I6 using grid search, as nodes simulated
under random or tolerance policies that reached final states
did not facilitate further tree expansion. Instances I7 and I8
were solved using a UCB selection policy with Cp = 1.41
and Nc = 5 under the top k expansion policy. For I7, the
solution found was higher by 3.19% compared to the state of



Fig. 5. Simulation performance vs Expansion Ratio - Instance 4

the art. In contrast, for I8, a new state-of-the-art solution was
achieved, improving the best known solution by 0.52%.

Parallelisation: In our implementation for instance I4, we
parallelised the MCTS across five cores. The parameters were
selected to illustrate the effects of parallelisation in a stochastic
environment. The parallelisation was applied during the sim-
ulation phase of the MCTS, with the minimum outcome from
the five parallel simulations being chosen as the final result.
In Figure 6, the distribution of outcomes from using five cores
for parallelisation shows better performance compared to the
non-parallelised approach. This confirms that parallelisation
enhances the effectiveness of the MCTS, particularly in the
initial days of the tree search.

Fig. 6. Comparison of the distributions for the simulated outcomes without
parallelisation and with 5 cores - Instance 4

The comparative analysis of five-core and ten-core par-
allelisations of MCTS, evaluated using Mann-Whitney and
Kolmogorov-Smirnov tests as shown in Figure 7, revealed
no statistically significant improvements at the 5% level. As
discussed in [5], excessive modifications to the MCTS can
sometimes lead to undesirable behaviour.

V. CONCLUSION

In this paper, a Monte Carlo Tree Search (MCTS) solution
was implemented to address the Kiwi.com Travelling Sales-
man Problem 2.0, focusing on the first eight instances without
imposing time constraints. The MCTS algorithm achieved
solutions close to, or matching, the state-of-the-art solutions
in several cases. Notably, for instance I8, a new best solution
was discovered, surpassing the previous best.

Fig. 7. Statistical tests to compare the 5 & 10 cores distribution - Instance 4

Regarding the selection policy, UCB1-Tuned outperformed
the classic UCB by guiding the tree search more accurately
through its consideration of simulation variability. However,
UCB1-Tuned generally explores the tree more broadly and
takes longer to converge compared to UCB. For expansion
ratios, a lower ratio was preferred for smaller instances
(I1, I2, I3) to achieve faster solutions. Conversely, for other
instances, a balanced ratio of 0.5 proved effective in incorpo-
rating new potential candidates into the solution space, thus
accelerating the tree search. Nevertheless, the top-k expansion
policy was superior, achieving solutions for I7 and I8 that were
close to and better than the best-known solutions, respectively.

In terms of simulation policies, the greedy approach consis-
tently provided the best performance across various instances,
minimising the risk of the search becoming trapped in local
optima due to the effectiveness of the selection policies. The
tolerance policy, while offering a balanced approach, some-
times exhibited undesirable behaviour with more complex
instances (e.g., I4). The random policy, though effective for
smaller instances, generally did not yield the best results and
is therefore less favourable overall.

Finally, we recommend focusing on parallelisation within
the MCTS framework. Parallelisation is especially beneficial
when employing stochastic simulations, as it enhances the
estimation of node values and improves the efficiency of the
tree search.

REFERENCES

[1] Statista, “Number of flights performed by the global airline industry
from 2004 to 2023, with a forecasts for 2024,” https://www.statista.com/
statistics/564769/airline-industry-number-of-flights/, 2024.

[2] Y. Pylyavskyy, A. Kheiri, and L. Ahmed, “A reinforcement learning
hyper-heuristic for the optimisation of flight connections,” in 2020 IEEE
Congress on Evolutionary Computation (CEC), 2020, pp. 1–8.

[3] Kiwi.com, “Travelling salesman challenge 2.0: Award ceremony,”
Youtube, 2019. [Online]. Available: https://www.youtube.com/watch?v=
Fp7LaEUwCjE

[4] M. Alrasheed, W. Mohammed, Y. Pylyavskyy, and A. Kheiri, “Local
search heuristic for the optimisation of flight connections,” in 2019 In-
ternational Conference on Computer, Control, Electrical, and Electronics
Engineering (ICCCEEE), 2019, pp. 1–4.

[5] C. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43,
2012.

https://www.statista.com/statistics/564769/airline-industry-number-of-flights/
https://www.statista.com/statistics/564769/airline-industry-number-of-flights/
https://www.youtube.com/watch?v=Fp7LaEUwCjE
https://www.youtube.com/watch?v=Fp7LaEUwCjE

	Introduction
	Problem description
	Methodology
	Selection Policy
	Simulation Policy
	Expansion Policy
	Parallelisation

	Computational Results
	Conclusion
	References

