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ABSTRACT
The importance of the nurse rostering problem in complex healthcare environments should not be
understated. The nurses in a hospital should be assigned to the most appropriate shifts and days so as
to meet the demands of the hospital as well as to satisfy the requirements and requests of the nurses as
much as possible. Nurse rostering represents a challenging and demanding combinatorial optimisation
problem. To address it, general and efficient methodologies, such as selection hyper-heuristics, have
emerged. In this paper, we will consider the multi-stage nurse rostering formulation, posed by the
second international nurse rostering competition’s problem. We introduce a sequence-based selection
hyper-heuristic that utilises a statistical Markov model. The proposed methodology incorporates a
dedicated algorithm for building feasible initial solutions and a series of low-level heuristics with
different dynamics that respect the characteristics of the competition’s problem formulation. Empirical
results and analysis suggest that the proposed approach has significant potential for difficult problem
instances.

1. Introduction
Over many years, nurse scheduling problems have attracted
extensive attention from the scientific community. The inter-
est has been motivated by the practical importance of nurse
rostering, which is strongly related to employee requirements
satisfaction, clinical and cost imperatives, and the computa-
tional challenges posed by this complex class of optimisation
problems. Indeed, rosters must determine a suitable number
of qualified nurses to meet the cover requirements arising
from patients in the hospital, adhering to regulations, distin-
guishing between temporary and permanent staff, ensuring
fair distribution of shifts and accommodating leave requests
and employee preferences [1]. Among staffing and schedul-
ing decision problems, nurse rostering is by far themost pop-
ular. In a recent survey on personnel scheduling, Bergh et al.
[2] counted seventy-four papers in nurse rostering account-
ing for more than one quarter of all papers classified per ap-
plication area.

As further evidence of the interest of the research com-
munity in this class of problems, two international competi-
tions have been held over the last decade or so. The First In-
ternational Nurse Rostering Competition (INRC-I) was run
in 2010 [3] with a focus on assigning nurses to shifts in a
fixed planning horizon, subject to hard and soft constraints.
As an outcome of this competition, significant results were
reported [4, 5, 6]. Some of the test instances were solved
to optimality, while new best solutions were computed for
others. Following the success of INRC-I, the second com-
petition (INRC-II) was launched in 2014 [7, 8]. The focus of
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INRC-II was to address a multi-stage version of the problem
on an extended planning horizon. The multi-stage setting re-
flects real operational environments more accurately, as the
rostering of a ‘stage’ (a week) is influenced by the assign-
ments of nurses in previous stages [9]. Therefore, the multi-
stage nature of the problem is approached by solving single
stage (one week) problems with an outlook to the long-term
performance required at the end of the planning horizon,
while the evaluation of a roster is assessed in the last stage of
the planning horizon, where all constraints and goals can be
accurately calculated for the desired multi-stage solution [7,
8]. Fifteen computational frameworks (algorithms) partic-
ipated in the INRC-II competition, including the sequence-
based selection hyper-heuristic (SSHH) algorithm presented
here.

Hyper-heuristics represent a category of optimisation
methods that emerged to address optimisation problems
across a wide category of different problem domains. The
term hyper-heuristic first originated in 2001 [10] to define
high-level approaches that are able to select or generate low-
level heuristics without drawing extensively on problem spe-
cific information. Selection hyper-heuristics choose heuris-
tics from a predefined set of low-level heuristics within a
framework, and use them to carry out a sequence of changes
(perturbations) to an evolving solution to improve its quality.
Generative hyper-heuristics evolve and identify new heuris-
tics based on an input set of low-level heuristics that exhibit
improved search capabilities and performance [11, 12].

The motivation behind the development of a sequence-
based selection hyper-heuristic (SSHH) for the nurse roster-
ing problem is to build amore forceful search approach of the
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solutions’ space. SSHH is one of the first hyper-heuristics
that employs sequences of heuristics, while its promising
performance gains have been verified over awide set of prob-
lem domains, such as school timetabling [13], vehicle rout-
ing [14, 15], inventory routing [16], wind farm layout opti-
misation [17], and urban transit routing [18] among others.
The proposed SSHH algorithm utilises a specific construc-
tion procedure to generate an initial feasible solution and ex-
ploit the search power of a set of nine dedicated low-level
heuristics to effectively search the optimisation landscape
and improve the initial solution while respecting feasibility.
The proposed low-level heuristics have different diversifica-
tion and intensification characteristics and cover a wide va-
riety of heuristic types, such as perturbation and ruin and
recreate.

The SSHH algorithm placed third among all the com-
peting algorithms of the INRC-II challenge. However, the
proposed algorithm was the only participant among the top
three entries of the competition that was able to locate a fea-
sible solution to every instance and performed comparably
well, in statistical terms, against the winner in the most dif-
ficult instances. Moreover, the algorithm exhibited robust
computational performance in terms of the resulting solu-
tion quality across all the test instances given the available
computational time budget.

The remainder of the paper is organised as follows. The
recent related work of the problem is presented in Section 2.
The multi-stage nurse rostering problem, including its main
characteristics and the models used in this study are briefly
described in Section 3. The proposed methodology includ-
ing the low-level heuristics used and the parameter settings
defined are presented in Section 4. The paper continues with
Section 5, where a thorough experimental evaluation of the
proposed framework on a wide set of nurse rostering prob-
lem instances is presented. Finally, the paper concludes in
Section 6 with a summary of the experimental findings of
this work and provides some pointers for future work.
2. Related Work
Several exhaustive reviews demonstrate a wide body of lit-
erature on the topic of nurse rostering problems [1, 19, 20].
These surveys describe a large number of nurse rostering
problems with very different features and characteristics that
are the consequence of different regulations and different or-
ganisational practices. To classify the different nurse ros-
tering problems, De Causmaecker and Vanden Berghe [20]
presented a notation scheme along the lines of the Graham
notation for scheduling problems [21]. The notation helps
to position the problem in the vast body of research on the
subject.

In addition to different models and/or formulations of the
nurse rostering problem, a wide variety of approaches have
been proposed in the literature to solve instances of prob-
lems, including exact [22, 23], heuristic [24, 25, 26, 27] and
hybrid [28, 29] methods. Santos et al. [22] proposed an in-
teger programming technique with improved cut generation
procedures and primal heuristics to solve to optimality and

provide tight dual bounds for a variety of nurse rostering
problem instances. He and Qu [23] studied a hybridisation
of a column generation with a constraint programming ap-
proach to model and address various benchmark problem in-
stances with complex constraints. The hybridisation exploits
the expressiveness of constraint programming tomodel com-
plex constraints and the effective relaxation and reasoning of
linear programming enhanced with novel column generation
techniques, resulting in a highly efficient hybrid algorithm.
Recently, Rahimian et al. [28] also proposed a hybrid algo-
rithm, which combines integer programming and constraint
programming to efficiently solve the problem. In particular,
constraint programming is used to generate a feasible solu-
tion to be used to start the IP solver.

Variable Neighbourhood Search (VNS), Tabu Search, It-
erated Local Search, Genetic Algorithms and Simulated An-
nealing represent well-studied algorithms that have been ap-
plied to address nurse rostering problems. The interested
reader may refer to Burke et al. [19] for a classification of
the nurse rostering literature - up to 2004 - that is not limited
to the problem definition (formulation) but also includes the
solution method perspective. Moreover, in this review, the
authors provide information on the data used andwhether the
reviewed approaches were applied in practice or not. More
recently, Zheng et al. [26] proposed a simplified VNS ap-
proach that employs a randomly combined group of opera-
tors to iteratively search for incumbent solutions, and a cycle
shift operator to diversify the search space when no improve-
ment is achievedwithin a certain number of iterations. Knust
and Xie [27] presented a simulated annealing approach that
proved to be effective in finding good quality and robust so-
lutions in a short amount of time, i.e., its computational per-
formance was not negatively influenced by the specific na-
ture of the problem instances solved.

In an attempt to solve the nurse rostering problem effi-
ciently, hybrid approaches that combine exact and heuristic
methods have been recently proposed to exploit the advan-
tages of both worlds. For instance, Rahimian et al. [29] pro-
posed a hybridisation scheme, closely related to the work
presented in [28], that combines integer programming and
the VNS heuristic.

Most, if not all, the approaches described so far suffer
from lack of generality across different problem domains. A
new category of methods emerged in response to this need,
which are referred to as hyper-heuristics [11]. The nurse
rostering and the more generic field of personnel schedul-
ing problem, has attracted a significant number of hyper-
heuristics researchers. Representative examples of effective
hyper-heuristics for addressing nurse rostering and person-
nel scheduling problems include but are not limited to [30,
24, 31, 25] and [32, 33] respectively.

Themulti-stage nurse rostering problem formulation pro-
posed in the INRC-II competition attracted several teams to
address the challenge. Römer and Mellouli [34], the win-
ning team, applied a mixed-integer linear program method-
ology to solve the problem that was formulated as a multi-
commodity network flow model. ORTEC [35] employed

Kheiri et al.: Preprint submitted to Computers & Operations Research Page 2 of 13



A hyper-heuristic approach based upon a hidden Markov model for the multi-stage nurse rostering problem

their commercial solver and enhanced it with an ejection
chain method to improve its performance. Legrain et al. [36]
developed a dynamic math-heuristic based on a primal-dual
algorithm and embedded it into a sample average approxi-
mation algorithm. The weekly “static (scenario)” version of
the problem is solved with a novel branch-and-price algo-
rithm. The branch-and-price approach is used as a routine
to reconstruct the rosters of some nurses within an adaptive
large neighbourhood search. The adaptive large neighbour-
hood search algorithm, in the attempt to find a better solu-
tion iteratively destroys and repairs a part of the current so-
lution [36]. A detailed overview of all the competing team
algorithms is available in Ceschia et al. [8].

Other algorithms have been proposed for the multi-stage
nurse rostering problem formulation of INRC-II. Mischek
and Nysret [37] and Thi Thanh Dang et al. [38] developed
hybrid methods between integer programming and various
local search algorithms. More recently, Ceschia et al. [39]
proposed an approach that employs a composition of large
neighbourhoods guided by the Simulated Annealing meta-
heuristic to solve the static version of the problem. As part of
the study, the authors investigated different neighbourhood
structures to obtain a better exploration of the search space.
3. Problem Description
In this section, we present the nurse rostering problem pro-
posed in the INRC-II challenge. The focus of the challenge
is to capture the dynamic aspects of the problem by con-
sidering a planning horizon of a given number of weeks.
At the beginning of each stage (week), the “solver" has to
compute the roster for the current week without having any
information about the future but relying exclusively on the
information up to the current stage (week). The objective
of the solver is to provide rosters for all the weeks that are
“globally" optimal or near-optimal, i.e., optimal for the com-
plete planning horizon. A detailed description of the prob-
lem studied in this work can be found on the INRC-II compe-
titionwebsite. For the sake of completeness, we here provide
a mathematical description of the problem.

The multi-stage problem formulation requires solving a
set of stages W = {w1,… , w

|W |

}, each corresponding to
one week. At each stage, it involves deciding at which shifts
S = {s1,… , s

|S|} and on which days D = {d1,… , d
|D|

}
each nurse N = {n1,… , n

|N|

} should work. Each nurse
may have multiple skills K = {k1,… , k

|K|

}, and for each
skill, different coverage constraints are required, where a cov-
erage constraint is defined as the minimum required (or pre-
ferred) number of nurses of each skill k ∈ K at any time in
the planning horizon [8, 40].

An instance of the problem is identified by three types of
information:

• Scenario information that is global to all weeks (stages)
and includes:
– Planning horizon in terms of weeks |W |.
– List of available skills K , such as, head and trainee.

– List of contractsC = {c1, c2,… , c
|C|}, e.g. full time and

part time. Each contract c ∈ C specifies the minimum
and maximum total number of assignments in the plan-
ning horizon (Q�c and Q�c , respectively); the minimum
and maximum number of consecutive working days (G�candG�c , respectively); the minimum andmaximum num-
ber of consecutive days-off (G �

c and G �
c , respectively);the maximum number of working weekends in the plan-

ning horizon (B�c ); and whether the complete weekend
constraint to the nurse is expected to be satisfied (Wc).

– List of nursesN .
– Each nurse n ∈ N is associated with a single contract
cn ∈ C .

– Each nurse n ∈ N is associated with a set of skillsKn ⊂
K .

– List of shift types S such as early, late and night.
– List of forbidden shift type successions S .
– Minimum and maximum number of consecutive assign-

ments of each shift type (G�s and G�s , respectively).
• Week data information that is specific to a single week

(Monday - Sunday). This information includes minimum
and optimal coverage requirements for each shift type, for
each week day and for each skill (ℛ�

s,d,k and ℛ�
s,d,k, re-spectively), and nurse preferences for specific days. Two

types of preferences are considered: Un,d,s and Vn,d . If
Un,d,s = 1, then nurse n has requested to not work at shift
s on day d. If Vn,d = 1, then nurse n has requested to take
a day off on day d.

• History information which is carried over from the pre-
ceding stage. This information includes border data (four
data sets) and the “Total worked shifts” and “Total num-
ber of worked weekends” counters. History information
includes the following:
– Last assigned shift of each nurse sn�. For example, if sn� =
nigℎt then nurse n is assigned to ‘night’ shift on Sunday
of the week before the planning period. Note that the
forbidden shift type successions must be avoided at the
beginning of stage, as well as that this can be empty at
the beginning of the process.

– Number of consecutive worked shifts ln�. For example,
if ln� = 2 then there is a shift assigned to nurse n on
Saturday and another shift on Sunday of the week before
the planning period.

– Number of consecutive days-off f n� . As an example, if
f n� = 1 then there is no shift assigned to nurse n on Sun-
day of the week before the planning period.

– Number of consecutive worked shifts of the last shift
type lsn� . For example, if sn� = nigℎt and lsn� = 3 then
nurse n is assigned to ‘night’ shift on Friday, Saturday
and Sunday of the week before the planning period.

– Total worked shifts. At the first week, the counter is as-
signed to zero.
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– Total number of worked weekends. At the first week, the
counter is assigned to zero.
The INRC-II problem contains four types of hard con-

straints (H) and eight types of soft constraints (S). A solution
must achieve feasibility and minimise the “evaluation func-
tion", i.e., a weighted sum of the soft constraints’ violations
(Equation 1):

Evaluate(R) =
∑

i∈{1,2,…,|S|}
WSi × VSi(R) (1)

where R is a given roster, WSi indicates the weight associ-ated to constraint Si, VSi indicates the amount of violation
of constraint Si for the given roster R. The weight values of
the soft constraints are provided in Table 1.

We proceed with the description of the set of hard con-
straints that has to be necessarily satisfied. To avoid repeti-
tion, we first define the decision variable xn,s,d,k as follows:

xn,s,d,k =

⎧

⎪

⎨

⎪

⎩

1 if nurse n is assigned to shift s on day d
utilising skill k;

0 otherwise.

and we continue with the description of the set of hard con-
straints:

• H1 Single assignment per day: A nurse can cover at
most one shift per day. This is represented as:

∑

s∈S

∑

k∈K
xn,s,d,k ≤ 1, ∀n ∈ N, d ∈ D (2)

• H2 Under-staffing: Minimum requirements for each
shift and for each skill per each day must be satisfied.
This is mathematically formulated as:

∑

n∈N
xn,s,d,k ≥ℛ

�
s,d,k, ∀s ∈ S, d ∈ D, k ∈ K (3)

• H3 Shift type successions: Shift type assignments of
a nurse in two consecutive days must avoid the forbid-
den shift types successions. The mathematical repre-
sentation is:

∑

k∈K
(xn,s1,d−1,k + xn,s2,d,k) ≤ 1,

∀n ∈ N, d ∈ D, (s1, s2) ∈ S
(4)

• H4 Missing required skill: A shift s ∈ S of a given
skill k ∈ K must necessarily be fulfilled by a nurse
n ∈ N having that skill k ∈ Kn.

We now describe the soft constraints whose violations
(VSi) are accounted in the evaluation function that is pre-
sented in Equation 1.

• S1 Insufficient staffing for optimal coverage: Num-
ber of nurses for each shift, and for each skill per each
day should be greater than or equal to the optimal re-
quirement. Each missing nurse will be counted as a

violation. Mathematically, the number of violations
of this constraint VS1 is:

∑

d∈D

∑

s∈S

∑

k∈K
max(0,ℛ�

s,d,k −
∑

n∈N
xn,s,d,k) (5)

• S2 Consecutive days off: Minimum and maximum
number of consecutive days off should be respected.
Each extra or missing day will be counted as a vio-
lation. The evaluation involves also the border data,
such as the last worked shift of each nurse. To model
the minimum and maximum requirements of consec-
utive days off, we need to introduce the following ad-
ditional (artificial) decision variables for each day of
the planning horizon and for each nurse:

sn,d =
{

1 if nurse n is off on day d;
0 otherwise.

These variables are the slack variables of Equation 2.

sn,d − sn,d−1 ≤ sn,d+� −
�
∑

t=1
�n,d,t

∀n ∈ N, d ∈ D, � = 1,… , �nmin

(6)

where �nmin is theminimumnumber of consecutive days
for nurse n. The variables �n,d,t are binary and are in-
troduced to capture the interruption of the minimum
consecutive days off requirement. The violation of
this requirement will be accounted for in the objective
function by the term:

∑

n∈N,d∈D,t=1,..,�nmin

(�nmin − t) ⋅ �n,d,t (7)

The violation of the requirement on themaximumnum-
ber of days off is calculated by:

max{0;
∑

t=�nmax,..,�
sn,d+t − (�nmax + � − 1)}

∀n ∈ N, d ∈ D, ��nmax + 1,… , |D|

(8)

where �nmax is the maximum number of consecutive
days for nurse n.

• S3 Consecutive assignments: Similar to S2 but con-
sidering the number of consecutive assignments.

• S4 Consecutive assignments per shift type: Simi-
lar to S2 but considering the number of consecutive
assignments per each shift type.

• S5 Preferences constraint: Each assignment to an
undesired shift is counted as a violation. Mathemati-
cally, the number of violations of this constraint VS5is:

∑

n∈N

∑

d∈D

∑

s∈S
(Un,d,s ×

∑

k∈K
xn,s,d,k)

+
∑

n∈N

∑

d∈D
(Vn,d ×

∑

s∈S

∑

k∈K
xn,s,d,k)

(9)
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Table 1
Weight values of the soft constraints

Soft Constraint Weight

S1 Insufficient staffing for optimal coverage 30
S2 Consecutive days off 30
S3 Consecutive assignments 30
S4 Consecutive assignments per shift type 15
S5 Preferences 10
S6 Complete weekends 30
S7 Total assignments 20
S8 Total working weekends 30

• S6 Complete weekends: Each nurse with a contract
c that has Wc = 1, must work both weekend days or
none, otherwise a violation will be counted. Mathe-
matically, the number of violations of this constraint
VS6 is:

∑

n∈N

∑

d∈D′
Wcn×

|

|

|

|

|

∑

s∈S

∑

k∈K
xn,s,d,k −

∑

s∈S

∑

k∈K
xn,s,d−1,k

|

|

|

|

|

(10)

where D′ = {7, 14, 21, 28} and cn is the contract of
nurse n.

• S7 Total assignments: The minimum and the maxi-
mum number of assignments over the entire planning
horizon should be respected. Each extra or missing
assignment will be counted as a violation. Mathemat-
ically, the number of violations of this constraint VS7is:

∑

n∈N
max(0,

∑

s∈S

∑

d∈D

∑

k∈K
xn,s,d,k −Q�cn )

+
∑

n∈N
max(0, Q�cn −

∑

s∈S

∑

d∈D

∑

k∈K
xn,s,d,k)

(11)

where cn is the contract of nurse n.
• S8 Total working weekends: Maximum number of

working weekends (if a nurse is assigned to either Sat-
urday or Sunday or both) over the entire planning hori-
zon should be respected. Each extra assignment will
be counted as a violation. Mathematically, the number
of violations of this constraint VS8 is:

∑

n∈N
max(0,

∑

d∈D′
max(

∑

s∈S

∑

k∈K
xn,s,d,k,

∑

s∈S

∑

k∈K
xn,s,d−1,k) − B�cn )

(12)

where D′ = {7, 14, 21, 28} and cn is the contract of
nurse n.

4. Methodology
A selection hyper-heuristic is a search methodology that op-
erates on the level of heuristics (or neighbourhood move op-
erators) instead of operating directly on the optimisation search

space [11, 12]. A set of search heuristics (low-level heuris-
tics) that might have different search behaviour is defined to
search the problem’s optimisation space. A selection hyper-
heuristic seeks to find an effective way to select and mix the
most promising heuristics at each stage of the search optimi-
sation procedure. Different hyper-heuristics have been de-
veloped and successfully addressed challenging real-world
problems that utilise either one or a sequence of heuristics.
Overview of SSHH The SSHH method employs a hid-
den Markov model as a selection method aiming to identify
effective sequences of heuristics by learning good transitions
among the low-level heuristics. To accomplish this, the pro-
posed hyper-heuristic employs a hidden Markov model in
which states correspond to low-level heuristics. For each
low-level heuristic in the model, a transition matrix is de-
fined to determine the probability of moving from itself to
any other low-level heuristic (including itself). Addition-
ally, each low-level heuristic has an associated sequence con-
struction matrix to determine whether to terminate the se-
quence at this point [41]. The sequence construction ma-
trix stores scores for each of the low-level heuristics in two
columns: continue and end.

LetH = {ℎ0, ℎ1,… , ℎn−1} represent the set of low-levelheuristics. We define two score matrices T rann×n (the tran-sition matrix) and Seqn×2 (the sequence construction ma-
trix). The probability of moving from low-level heuristic
ℎk to ℎl is given by: T ran(k,l)∕∑∀j T ran(k,j). Initially, allprobabilities of moving from one low-level heuristic to any
other are initialised uniformly, i.e., T ran(i,j) = 1 for all i, j.
In order to construct a sequence of heuristics, the matrixSeq
is used to compute the status of that sequence: either the se-
quence will end and the low-level heuristics within it will be
applied to the current solution in the order in which they ap-
pear, or the sequence will continue, and the next low-level
heuristic will be selected. The sequence construction proba-
bilities for each low-level heuristic are initialised to 0.5, i.e.,
Seq(i,continue) = 1, Seq(i,end) = 1 for i = 0, 1,… , n − 1.

At first, a random heuristic ℎc is chosen as a starting
position. The iterative process of the hyper-heuristic then
starts and runs until a time limit is exceeded. It begins
by selecting the next heuristic ℎx, using the roulette wheel
selection strategy, and adding it to the sequence. Next,
we determine whether or not the sequence will terminate
at this point. The probability of continuing the sequence
is given by Seq(x,continue)∕(Seq(x,continue) + Seq(x,end)) andthe probability that the sequence is complete is given by
Seq(x,end)∕(Seq(x,continue) + Seq(x,end)).Let us assume that the sequence is not complete (i.e. sta-
tus = continue). In this case, we move from ℎx to the next
low-level heuristic ℎy and select the status of Seq using a
roulette wheel selection strategy. At this point, we assume
that the sequence is complete (i.e. status = end). The se-
quence will now be applied to the current solution to gen-
erate a new solution. At this point, if the quality of the
new solution is better than the quality of the best solution
in hand, then the sequence of low-level heuristics that led to
it is awarded accordingly by updating the two score matrices.
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In this example, the following scores will be increased by 1:
T ran(c,x), T ran(x,y), Seq(x,continue) and Seq(y,end). This willincrease the chance of selecting the sequences that generate
improved solutions.

Recall that the second component of a traditional selec-
tion hyper-heuristic framework ismove acceptance. Themove
acceptance criterion is used to decide whether to accept or
reject the new candidate solution. If the new candidate so-
lution Snew is accepted, it will replace the original solution
Scandidate. The construction of the heuristic sequence is nowcompleted and a new one will begin in the next iteration.

For a more in-depth description of the method with ex-
amples, the reader can refer to [41].
Initial solution construction algorithm Recall that a
solution method is expected to solve a single stage of the
problem (wm, such that 1 ≤ m ≤ |W |) that corresponds
to one week. However, as resources are taken up at any
stage, forecasting is needed to cope well with subsequent
stages ({wm+1,… , w

|W |

}). Recall also that the daily cov-
erage requirements and the nurse preferences are only avail-
able forwm, which would necessitate the forecasting of theserequirements and preferences for the remaining weeks. Our
model is building on the assumption that for the remaining
stages (wm+1 to w|W |

), no minimum coverage requirements
or nurse preferences are needed to be satisfied, but they may
satisfy the same optimal coverage requirements as in stage
wm (e.g. if the optimal number of nurses of a particular skill
for a particular type of shift onMonday is 3 at stagewm, thenthe same optimal number of nurses specified by the skill and
the shift type is expected to be satisfied for each Monday in
the remaining stages).

An initial solution to the problem is computed by a local
search heuristic that aims to satisfy all the hard constraints.
More specifically, the local search heuristic uses a neigh-
bourhood operator that iterates through the days. At each
step, it assigns a new shift type with a particular skill from
the minimum coverage requirements to the roster for a ran-
domly selected nurse while satisfying the single assignment
per day constraint, shift type succession constraint, and re-
quired skill constraint. If a feasible assignment of nurses
to shifts is not achieved after considering all the available
nurses, then all the assignments of the day will be destroyed
and the local search method will be re-applied. We consider
1000 trials per day and if feasibility is not obtained, then
the whole solution will be destroyed and the solution will be
constructed from the first day. The construction of the initial
solution is described in Algorithm 1.

The initial solutions are almost always feasible, but they
usually have many soft constraint violations. Therefore, it
is critical for the hyper-heuristic algorithm to be able to im-
prove the initial solutions. The returned solution for the cur-
rent stage (wm) will be fed into the next stage as an initial
solution. However, because the minimum coverage require-
ment will be revealed for the next stage (wm+1), we will needto rectify the solution by assigning those unassigned shifts
to available nurses while respecting all the hard constraints.
Again, we consider 1000 trials per day and if feasibility is not

obtained, we destroy the whole solution and start the con-
struction from the first day as described in Algorithm 1.

Algorithm 1: Construction of initial solution
1 Let Sinitial represent the initial solution to be constructed;
2 repeat
3 Reset(Sinitial);
4 foreach d ∈ D do
5 for trial ← 1, 2,… , 1000 do
6 foreach s ∈ S do
7 foreach k ∈ K do
8 for r← 1, 2,… ,ℛ�

s,d,k do
9 if there is a feasible n ∈ N then

10 Assign(n, s, d, k, Sinitial);
11 else
12 Destroy assignments in

Sinitial of day d;
13 Goto next trial;

14 if trial successful then
15 Break from this loop;
16 if all trials failed then
17 Break from this loop;
18 until IsFeasible(Sinitial);
19 return Sinitial;

Low-level heuristics A key component of the SSHH to
produce good quality solutions to the multi-stage nurse ros-
tering problem is the set of effective and diverse low-level
heuristics. The developed low-level heuristics span across
three well-known and different types of heuristics, namely
perturbation, exchange, and ruin and recreate heuristics.

Perturbation heuristics usually perform either small or
large changes on a solution such as swapping elements, mod-
ifying, adding, or removing solution components. Exchange
heuristics work by exchanging two, usually large, parts of
the solution. Such operations usually induce large steps in
the search space and promote global search behaviour. Note
that Exchange heuristics can be characterised as Perturba-
tion heuristics since their search pattern can be similar. Here,
we make this distinction to indicate the specific pattern of
moving consecutive blocks from one solution to another, fol-
lowed by a repair operation if required. Ruin and recreate,
or destruction-construction heuristics perform two main op-
erations on a solution: first they destroy a part of the solution
and then recreate it. Ruin and recreate heuristics favour ex-
ploration of the search space and usually incorporate prob-
lem domain knowledge-based heuristics to recreate the de-
stroyed solutions.

To effectively search the space of the multi-stage nurse
rostering problem formulation, we develop a set of nine fairly
simple low-level domain-specific heuristics:

• Four perturbation heuristics: LLH0-2, and LLH8,
• Two ruin and recreate heuristics: LLH3-4,
• Three exchange heuristics: LLH5-7.
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 Mon Tue Wed Thu Fri Sat Sun 

Nurse1 E C E C L C - - - - - - N N 

Nurse2 - - - - - - - - N C N C N C 

Nurse3 - - L N L N L N - - E N - - 

 

 

 Mon Tue Wed Thu Fri Sat Sun 

Nurse1 E C E C L C - - - - - - N N 

Nurse2 - - - - E C E N E C E C E C 

Nurse3 - - L N L N L N - - E N - - 

 

Figure 1: An example to illustrate how the first option
of LLH0 works. Shift types (in red): E Early, L Late,
N Night; Skills (in blue): N Nurse, C Caretaker. In this
example, a block of 5 consecutive days for Nurse2 is se-
lected. The cells have been assigned to the shift type E.
Two of the cells (Wed and Thu) were unassigned to any
shift and so the heuristic assigns random skills to them

The low-level heuristics modify a solution by taking into ac-
count shifts, shift types, and skills within specific blocks of
time. A brief description of the low-level heuristics follows.

• LLH0: Selects a block of adjacent P days for a ran-
domly selected nurse and then assigns (or reassigns)
shifts to the selected block. The parameter P (length
of block) can take any value between 1 and the planning
horizon at random. Recall that a shift is a combination
of a shift type and a skill. One of the following five
options is randomly selected and applied:
– Option 1: Select a single type of shift randomly
and assign it to the selected block. The skills re-
main without any change, but if one of the cells was
not assigned to any shift then we randomly select a
new feasible skill and assign it to that cell. An ex-
ample of this option is given in Figure 1.

– Option 2: Select a single shift type randomly and
assign it to the selected block. The feasible skills
will be randomly selected for each shift.

– Option 3: Select a feasible single skill randomly
and assign it to the selected block. The shift types
remain without any change, but if one of the cells
was not assigned to any shift then we randomly se-
lect a new shift type and assign it to that cell.

– Option 4: Select a feasible single skill randomly
and assign it to the selected block. The shift types
will be randomly selected for each shift.

– Option 5: Delete the shifts of the selected block.

 Mon Tue Wed Thu Fri Sat Sun 

Nurse1 E C E C L C - - - - - - N N 

Nurse2 - - - - - - - - N C N C N C 

Nurse3 - - L N L N L N - - E N - - 

 

 

 Mon Tue Wed Thu Fri Sat Sun 

Nurse1 E C E C L C - - - - - - N N 

Nurse2 - - - - - - L N - - E N N C 

Nurse3 - - L N L N - - N N N N - - 

 

Figure 2: An example to illustrate how the first option
of LLH1 works. Shift types (in red): E Early, L Late,
N Night; Skills (in blue): N Nurse, C Caretaker. In this
example, shifts of three consecutive days for Nurse2 and
Nurse3 are vertically swapped. Skill C is not feasible
for Nurse3, hence the skills on Fri and Sat are changed
randomly to feasible skills using the rectify method

• LLH1: Selects two nurses randomly and a block of
adjacent P days and swaps vertically. The parame-
ter P (length of block) can take any value between 1
and the planning horizon at random. Because a given
skill might not be feasible for a given nurse, a rectify
method is applied to change the unfeasible assignments
of skills to another randomly selected feasible skills.
One of the following three options is randomly selected
and applied:
– Option 1: Swap both shift types and skills. Fig-
ure 2 provides an example of this option.

– Option 2: Swap shift types only.
– Option 3: Swap skills only.

• LLH2: Follows the same procedure as LLH1, apart
from the fact that the heuristic selects two blocks of ad-
jacent P days of a randomly selected nurse and swaps
horizontally. One of the following three options is ran-
domly selected and applied:
– Option 1: Swap both shift types and skills. Fig-
ure 3 provides an example of this option.

– Option 2: Swap shift types only.
– Option 3: Swap skills only.

• LLH3: This LLH defines a ruin and recreate operator
for one nurse. It works by un-assigning several shifts in
one randomly selected nurse and then rebuilding them
at random by adding, replacing, or deleting shift types
and/or skills. The number of modified shifts P can take
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 Mon Tue Wed Thu Fri Sat Sun 

Nurse1 E C E C L C - - - - - - N N 

Nurse2 - - - - - - - - N C N C N C 

Nurse3 - - L N L N L N - - E N - - 

 

 

 Mon Tue Wed Thu Fri Sat Sun 

Nurse1 E C E C - - N N - - L C - - 

Nurse2 - - - - - - - - N C N C N C 

Nurse3 - - L N L N L N - - E N - - 

 

Figure 3: An example to illustrate how the first option
of LLH2 works. Shift types (in red): E Early, L Late, N
Night; Skills (in blue): N Nurse, C Caretaker. In this ex-
ample, two shifts each of two consecutive days for Nurse1
are horizontally swapped

any value between 1 and the planning horizon at ran-
dom. Algorithm 2 demonstrates the exact procedure
that is followed for this operation.

Algorithm 2: Ruin and recreate for one nurse
1 Let LLH0(n, O, PLLH0) represent applying option O of

LLH0 to nurse n and PLLH0 is the parameter of LLH0;
2 Let Rand(a, b) return uniform random number in [a, b];
3 Select random n ∈ N ;
4 for i← 1, 2,… , P do
5 op← Rand(1, 3);
6 if op = 1 then
7 LLH0(n, 1, Rand(1, 7));
8 else if op = 2 then
9 LLH0(n, 3, 1);

10 else if op = 3 then
11 LLH0(n, 5, Rand(1, 7));

• LLH4: This LLH defines a ruin and recreate operator
for many nurses. It is clearly described in Algorithm 3.

• LLH5: This LLH defines an exchange operator for two
blocks of adjacent P days for two randomly selected
nurses. For each cell, the heuristic either swaps the
shift types, skills, or both. The parameter P of this
heuristic can take any value between 1 and the planning
horizon at random. Figure 4 illustrates a characteristic
example that clearly demonstrates the operation.

• LLH6: This heuristic is the same asLLH5, apart from
the fact that the operator selects two vertical blocks of
adjacent P days for two randomly selected nurses; and
for each cell, the exchange probability is 50%. The pa-

Algorithm 3: Ruin and recreate for several nurses
1 Let LLH0(n, O, PLLH0) represent applying option O of

LLH0 to nurse n and PLLH0 is the parameter of LLH0;
2 Let Rand(a, b) return uniform random number in [a, b];
3 for i ← 1, 2,… , P do
4 Select random n ∈ N ;
5 op← Rand(1, 3);
6 if op = 1 then
7 LLH0(n, 1, Rand(1, 7));
8 else if op = 2 then
9 LLH0(n, 3, 1);

10 else if op = 3 then
11 LLH0(n, 5, Rand(1, 7));

 Mon Tue Wed Thu Fri Sat Sun 

Nurse1 E C E C L C - - - - - - N N 

Nurse2 - - - - - - - - N C N C N C 

Nurse3 - - L N L N L N - - E N - - 

 

 

 Mon Tue Wed Thu Fri Sat Sun 

Nurse1 - - N C L C - - - - - - N N 

Nurse2 - - - - - - E C E C N C N C 

Nurse3 - - L N L N L N - - E N - - 

 

Figure 4: An example to illustrate how LLH5 works.
Shift types (in red): E Early, L Late, N Night; Skills
(in blue): N Nurse, C Caretaker. In this example, an ex-
change operator is applied to shifts of three consecutive
days for Nurse1 and Nurse2. The shift types and skills
of the first cell are swapped. Only the shift types are
swapped for the second cell. Only the skills are swapped
for the third cell

rameter P of this heuristic can take any value between
1 and the planning horizon at random.

• LLH7: This heuristic is the same asLLH6, apart from
the fact that the parameter P of this heuristic (length
of block) is a multiple of 7 (week days). For example,
if we are currently solving the problem at stage 5 of 8
stages, then the parameter can take one of the following
four values: 7, 14, 21 and 28 at random.

• LLH8: This heuristic essentially is a swap operator
that works similar toLLH1, apart from the fact that the
parameter P of this heuristic is a multiple of 7. Once
again, one of the following three options is randomly
selected and applied:
– Option 1: Swap both shift types and skills verti-
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cally.
– Option 2: Swap shift types only vertically.
– Option 3: Swap skills only vertically.

Parameter settings The sequence selection method is
generally parameter-free apart from the threshold for themove
acceptance method. Specifically, a generated solution is ac-
cepted by the move acceptance method if either its quality is
better than or equal to the quality of the candidate solution,
or its quality is better than or equal to the quality of the best
solution in hand plus a threshold value. The quality of the
solution is calculated using the evaluation function provided
in Equation 1. The value of the threshold value is set to 30.
This parameter value is chosen after performing a set of fine-
tuning experiments. Additionally, to avoid stagnation of the
search process, the solution will be partially restarted (by ap-
plying three randomly selected low-level heuristics) if there
is no improvement to the best-recorded solution in hand for
a large number of iterations (|N| × 250000).
5. Computational Results
In this section, we summarise the computational results of
SSHH on a set of instances provided by the organisers of
the INRC-II competition. We also compare and contrast the
computational performances of the SSHH with the compet-
ing algorithms.

The organisers of the benchmark provided a testbed com-
posed of 20 datasets, each with 3 initial history files and 10-
week data files. The same week data file can also be used
multiple times in the same instance. Table 2 summarises the
main characteristics of these datasets.

The INRC-II competition was run in two phases: a qual-
ification round and a final phase that revealed the winner
of the competition. For the qualification phase, 14 datasets,
each composed of two instances, were released. The com-
petitors submitted their executable files and the solutions of
the 28 instances. To facilitate fair comparisons across differ-
ent computational environments, a benchmarking software
tool provided by the organisers, available at the competi-
tion website, was used by each competitor to estimate the
computational time-budget per stage and per dataset that was
available to spend based on their computational environment
(machine to be used for the execution of their algorithm).
Qualification phase of the INRC-II In the qualification
phase, the organisers compared all the approaches on the
same computational machine and using the same time limit.
For each instance solved, a rank of the competing approaches
was defined according to the objective function value. The
average rank across all the instances solved was used to qual-
ify the teams for the second phase of the INRC-II challenge.
Out of 15 submitted solvers, only 7 teams were admitted to
the final phase. Figure 5 displays the average rank for all
the competing approaches in the qualification phase. SSHH
ranked in the third place.

Table 2
Characteristics of the 20 datasets (14 were used for the quali-
fication phase and 6 for the final phase): |N| is the number of
nurses, |K| is the number of available skills, |S| is the number
of shift types, |W | is the number of weeks, |C| is the num-
ber of available contracts, |S | is the number of forbidden shift
types successions

Dataset |N| |K| |S| |W | |C| |S |

D1 30 4 4 4 3 6
D2 30 4 4 8 3 6
D3 35 4 4 4 3 5
D4 35 4 4 8 3 5
D5 40 4 4 4 3 5
D6 40 4 4 8 3 5
D7 50 4 4 4 3 5
D8 50 4 4 8 3 5
D9 60 4 4 4 4 6
D10 60 4 4 8 3 5
D11 70 4 4 4 3 5
D12 70 4 4 8 3 5
D13 80 4 4 4 4 5
D14 80 4 4 8 4 5
D15 100 4 4 4 4 5
D16 100 4 4 8 4 5
D17 110 4 4 4 4 5
D18 110 4 4 8 4 5
D19 120 4 4 4 3 5
D20 120 4 4 8 3 5
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Figure 5: Ranking results of the qualification phase of INRC-II

Final phase of the INRC-II In the final phase, the final-
ists’ solvers were compared on a set of 60 hidden instances
taken from six hidden datasets (D3, D4, D11, D12, D17, and
D18 as shown in Table 2). To facilitate fair comparisons,
10 independent execution runs with different random seeds
for each instance were conducted, resulting in a total of 600
independent execution runs per competitor. The final objec-
tive value obtained from each execution run in each instance
were ranked and then averaged to determine the winner of
the INRC-II.

Table 3 summarises the performance results for all com-
petitors in the final phase of the challenge on all problem in-
stances of the six hidden datasets. More specifically, for each
dataset (D ∈ {D1,D4,D11,D12,D17,D18}), each problem
instance (I ∈ {I1, I2,… , I10}), and each competing algo-
rithm (SSHH and the remaining six teams, Team2–Team7),
the average (�f ) of the best objective value are reported,
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which were obtained over 10 independent execution runs.
For each instance, the number of successful execution runs
(%S) is also reported, i.e., the number of times an algorithm
was able to compute a feasible solution within the prede-
fined time-budget. In addition, for each problem instance,
we conduct a pairwise Wilcoxon-signed rank test [42] be-
tween the proposed algorithm and each considered competi-
tor (for � = 0.05), to assess whether there exist signifi-
cant differences between their performance values over the
10 independent runs. The status of the pairwise test is re-
ported next to the �f performance value of each team, where
marks +/=/– indicate a statistical better, equal andworse per-
formance of the proposed SSHH against the corresponding
team. At the bottom of the table, we report the number of
times the SSHH algorithm exhibits significantly better (+),
equal (=), or worse (–) performance gains against each com-
petitor, over all problem instances. Finally, the number of
infeasible solutions over all runs is reported as well as the
final average ranking of each algorithm as it was calculated
by the organisers of the competition. Note that the final aver-
age ranking of each algorithm is the average ranking of their
rankings for each problem instance in each independent run.

Team7, thewinner of the challenge, is a problem-specific
hybrid algorithm between an exact and a heuristic approach.
Although it is able to find feasible solutions in several cases,
there are some datasets where it struggles to perform well
such as in the D4 set, for instances I1, I2, I3, and I5 and in
two problem instances of the D17 set (i.e., I3, and I7). In the
D4 dataset, in 3 out of 10 instances Team7’s algorithm is
able to find solutions in less than 20% of the execution runs
(for instances I1, I3, and I5), while it cannot find any feasible
solution for the I1 instance. Team3 follows the results of the
winner with a very close performance across the majority of
the problem instances and datasets. However, it is not able to
compute a feasible solution for instance I6 of the D4 dataset.

Among the competitors, SSHH is the first reliable ap-
proach that exhibits very good performance gains in terms
of average objective values without producing any infeasible
solution on the considered problem instances. SSHH ranked
third overall with a score of 2.84 and is the approach with the
lowest rank among the competitors that produces only feasi-
ble solutions across all problem instances and datasets.

Regarding the remaining competing algorithms, Team4,
Team5, and Team2 obtained average rankings of 3.75, 5.35,
and 6.13 while they did not produce any infeasible solutions.
In general, their performance gains were significantly worse
than the top three. On the other hand, Team6 had an average
ranking of 6.32 and produced six infeasible solutions all of
them in the D11 dataset I1, I3, I4, and I8–I10, resulting in the
worst performance among the finalists of the competition.

To have a general overview of how the algorithms per-
form per dataset, we normalised the objective function val-
ues per problem instance. As such, Figure 6 illustrates box-
plot graphs to compare the distributions of the normalised
objective values of each considered algorithm per dataset,
where the diamond mark denotes the mean value of the un-
derline performance values’ sample. The boxplot graphs
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Figure 6: Normalised objective value per problem instance,
summarised over datasets

clearly depict the aforementioned described performance of
all algorithms. It is worth noting that the algorithm of Team7
in almost all datasets (apart from D3 and D11) exhibits out-
liers (i.e., generation of infeasible solutions), while its poor
performance in the D4 case is captured by the size of the
boxplot, which essentially lies in the whole range of the nor-
malised objective values.

It is worth noting that the performance of the SSHH algo-
rithm closely follows the first two ranked approaches, while
its performance gains are more evident as the problems be-
come more challenging, i.e., as the number of the nurses in-
creases up to 110 nurses (as in datasets D17 and D18).
An analysis of SSHH SSHH incorporates a set of low-
level heuristics and creates sequences of low-level heuris-
tics using transition and sequence construction matrices. As
such, an analysis of the most frequently used sequence of
low-level heuristics might reveal insights about the effective-
ness of such a combination on specific problem classes (de-
fined here by the different datasets and their corresponding
problem instances).

Figures 7 and 8 illustrate the average probabilities of the
transition and sequence construction matrices over 10 inde-
pendent trials of each low-level heuristic while solving the
first stage of the nurse rostering problem for two selected in-
stances from the D3 and D17 datasets. A simulator was then
developed to mimic the way in which the algorithm works,
using the final HMM probability matrices as input for the
selected two problem instances. Table 4 shows the sets of
likely sequences that have been generated using the simu-
lator. Although, it is argued that the proposed SSHH algo-
rithm is a general approach that can be applied to any prob-
lem instance and therefore the best-discovered sequences of
heuristics for a given instance it may not be the best for an-
other problem instance, yet the method seems to favour the
same set of sequences while solving the two instances from
the different datasets. LLH0 (whether alone or when com-
bined with any other heuristic) is the most successful heuris-
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Table 3
The performance comparison of the SSHH approach against the other competitors in the
final phase of the challenge. For each competitor, problem instance, and datasets, the
table demonstrates the average (�f ) of the objective value over 10 independent runs as
well as the success rate, i.e., the percentage of instances for which a feasible solution has
been computed (%S). Team2 is LabGOL, Team3 is Polytechnique Montreal, Team4 is
Hust.Smart, Team5 is ORTEC, Team6 is ThreeJohns, Team7 is NurseOptimizers

SSHH Team2 Team3 Team4 Team5 Team6 Team7

�f %S �f %S �f %S �f %S �f %S �f %S �f %S

D1 I1 1731.5 100 2105.5+ 100 1695.0= 100 1756.5= 100 2016.0+ 100 2059.5+ 100 1630.0– 100
D1 I2 2005 100 2342.0+ 100 1873.0– 100 2021.5= 100 2166.5+ 100 2295.0+ 100 1831.5– 100
D1 I3 1928.5 100 2219.0+ 100 1867.0– 100 1834.5– 100 2176.0+ 100 2158.5+ 100 1755.0– 100
D1 I4 1666 100 2069.0+ 100 1617.0– 100 1723.5+ 100 1963.5+ 100 1935.0+ 100 1586.0– 100
D1 I5 1695.5 100 2065.0+ 100 1569.5– 100 1737.0= 100 1939.5+ 100 2072.5+ 100 1545.0– 100
D1 I6 1631 100 1992.5+ 100 1544.5– 100 1644.5= 100 1818.0+ 100 1954.5+ 100 1510.0– 100
D1 I7 1407.5 100 1845.0+ 100 1352.5= 100 1370.5= 100 1644.0+ 100 1680.0+ 100 1367.5= 100
D1 I8 1845.5 100 2206.5+ 100 1780.0– 100 1947.5+ 100 2113.0+ 100 2236.0+ 100 1708.0– 100
D1 I9 1804 100 2304.5+ 100 1774.5= 100 1970.5+ 100 2101.5+ 100 2309.5+ 100 1695.0– 100
D1 I10 1804 100 2225.5+ 100 1739.0– 100 1927.5+ 100 2083.5+ 100 2179.0+ 100 1652.0– 100

D4 I1 3619.5 100 4247.0+ 100 3142.5– 100 3628.0= 100 4171.0+ 100 4303.0+ 100 99999.0+ 0
D4 I2 3485.5 100 4085.5+ 100 2947.5– 100 3653.5+ 100 4045.5+ 100 4151.0+ 100 12669.0= 90
D4 I3 3432.5 100 4093.5+ 100 2987.5– 100 3378.5= 100 4019.0+ 100 4078.0+ 100 80576.0+ 20
D4 I4 3472.5 100 4112.0+ 100 2928.0– 100 3325.0– 100 3969.0+ 100 4105.5+ 100 2849.5– 100
D4 I5 3419 100 4129.0+ 100 3072.0– 100 3548.5= 100 4011.0+ 100 4296.5+ 100 2842.0– 100
D4 I6 3499 100 4205.0+ 100 12718.0= 90 3672.0+ 100 4098.0+ 100 4285.0+ 100 90304.0+ 10
D4 I7 3699.5 100 4317.5+ 100 3179.0– 100 3632.5= 100 4143.5+ 100 4423.5+ 100 3028.5– 100
D4 I8 3582 100 4105.5+ 100 3024.0– 100 3603.0= 100 4096.5+ 100 4132.0+ 100 2863.0– 100
D4 I9 3659 100 4350.5+ 100 3205.5– 100 3533.5– 100 4228.0+ 100 4287.5+ 100 3083.5– 100
D4 I10 3508 100 4155.0+ 100 2962.0– 100 3488.0= 100 3967.5+ 100 4278.0+ 100 2928.0– 100

D11 I1 2905 100 3694.5+ 100 2892.0= 100 3151.0+ 100 3531.5+ 100 13475.0+ 90 2723.0– 100
D11 I2 2616.5 100 3306.5+ 100 2605.5= 100 2889.0+ 100 3088.0+ 100 3417.5+ 100 2446.0– 100
D11 I3 2609.5 100 3394.0+ 100 2671.5= 100 2948.0+ 100 3242.0+ 100 13064.0+ 90 2557.5– 100
D11 I4 2688.5 100 3559.5+ 100 2662.5= 100 3016.0+ 100 3336.0+ 100 13360.0+ 90 2477.0– 100
D11 I5 2590 100 3198.5+ 100 2536.5= 100 2864.0+ 100 3055.0+ 100 3337.5+ 100 2323.0– 100
D11 I6 2875.5 100 3553.0+ 100 2918.0= 100 3134.5+ 100 3325.5+ 100 3596.0+ 100 2728.0– 100
D11 I7 2824 100 3535.5+ 100 2740.5– 100 3012.0+ 100 3217.5+ 100 3649.5+ 100 2533.0– 100
D11 I8 2836 100 3410.5+ 100 2764.0– 100 3141.5+ 100 3329.5+ 100 13307.0+ 90 2635.0– 100
D11 I9 2762 100 3398.5+ 100 2729.0= 100 3005.5+ 100 3262.5+ 100 13124.0+ 90 2544.5– 100
D11 I10 2835.5 100 3542.0+ 100 2775.5= 100 3046.0+ 100 3268.0+ 100 13187.0+ 90 2652.0– 100

D12 I1 5954.5 100 7106.0+ 100 5640.5– 100 6222.0+ 100 7049.5+ 100 6820.0+ 100 5164.0– 100
D12 I2 6023.5 100 7258.0+ 100 5750.5– 100 6602.0+ 100 7117.5+ 100 7039.0+ 100 5478.5– 100
D12 I3 6157 100 6976.0+ 100 5769.5– 100 6236.5= 100 7182.0+ 100 6756.5+ 100 5549.0– 100
D12 I4 5594 100 6977.5+ 100 5516.0= 100 6018.5+ 100 6662.0+ 100 6615.5+ 100 5167.0– 100
D12 I5 5997.5 100 7237.5+ 100 5705.5– 100 6259.0+ 100 7033.5+ 100 6716.0+ 100 5581.5– 100
D12 I6 6048 100 7290.0+ 100 5724.0– 100 6315.0+ 100 6985.0+ 100 6790.5+ 100 5359.5– 100
D12 I7 6203 100 7244.0+ 100 5859.5– 100 6317.5+ 100 7155.5+ 100 6862.5+ 100 5531.5– 100
D12 I8 5858 100 6885.0+ 100 5428.5– 100 6255.0+ 100 6864.5+ 100 6706.0+ 100 5240.0– 100
D12 I9 6054.5 100 7207.5+ 100 5672.5– 100 6492.5+ 100 7054.5+ 100 6890.5+ 100 7138.5= 100
D12 I10 5886.5 100 7126.0+ 100 5688.0– 100 6044.5+ 100 6957.0+ 100 6711.5+ 100 5374.0– 100

D17 I1 2823.5 100 3861.0+ 100 2765.5– 100 3539.0+ 100 3817.0+ 100 4051.5+ 100 2725.0– 100
D17 I2 3125.5 100 4229.0+ 100 3020.0– 100 3663.0+ 100 4074.0+ 100 4529.5+ 100 3065.0– 100
D17 I3 3044.5 100 4149.5+ 100 3027.5= 100 3769.0+ 100 4030.0+ 100 4429.0+ 100 12690.0= 90
D17 I4 3058.5 100 4215.5+ 100 2923.5– 100 3569.5+ 100 3976.0+ 100 4342.5+ 100 3210.0= 100
D17 I5 3532.5 100 4628.0+ 100 3438.5= 100 4092.0+ 100 4427.0+ 100 4700.0+ 100 3425.0– 100
D17 I6 3043 100 4152.0+ 100 2957.0– 100 3661.0+ 100 3958.5+ 100 4210.5+ 100 2855.5– 100
D17 I7 3290 100 4381.5+ 100 3113.0– 100 3903.5+ 100 4198.5+ 100 4559.5+ 100 51625.0= 50
D17 I8 3189 100 4394.0+ 100 3032.5– 100 3637.5+ 100 4018.5+ 100 4369.5+ 100 3095.0– 100
D17 I9 3654.5 100 4744.5+ 100 3497.0– 100 4025.0+ 100 4542.5+ 100 4708.0+ 100 3502.5– 100
D17 I10 3419.5 100 4382.5+ 100 3233.5– 100 3769.0+ 100 4214.0+ 100 4600.5+ 100 3540.0= 100

D18 I1 5485 100 7364.0+ 100 5326.0– 100 6596.0+ 100 7359.5+ 100 7939.5+ 100 5243.0– 100
D18 I2 5121.5 100 7010.0+ 100 4930.5– 100 6172.5+ 100 6679.0+ 100 7475.5+ 100 4982.5– 100
D18 I3 5237.5 100 6869.0+ 100 4874.0– 100 6227.0+ 100 6795.0+ 100 7640.5+ 100 4939.0– 100
D18 I4 5224.5 100 7144.0+ 100 5071.0– 100 6251.5+ 100 6996.5+ 100 7837.5+ 100 5234.0= 100
D18 I5 4800 100 6824.0+ 100 4624.5– 100 6146.5+ 100 6627.0+ 100 7229.0+ 100 5021.5+ 100
D18 I6 5226 100 7048.5+ 100 5040.5– 100 6469.0+ 100 6996.5+ 100 7728.0+ 100 5510.5+ 100
D18 I7 5329 100 7157.5+ 100 5259.5= 100 6514.0+ 100 6923.5+ 100 7721.5+ 100 5259.5= 100
D18 I8 4869.5 100 6801.0+ 100 4576.0– 100 6115.5+ 100 6581.5+ 100 7235.0+ 100 4842.5= 100
D18 I9 5358 100 7311.0+ 100 5039.5– 100 6222.5+ 100 7163.5+ 100 8222.0+ 100 5274.0= 100
D18 I10 4752 100 6708.0+ 100 4519.5– 100 5809.0+ 100 6454.0+ 100 7384.5+ 100 5292.0= 100

Stat. Sig. # (+/=/–) (60/0/0) (0/16/44) (45/12/3) (60/0/0) (60/0/0) (5/12/43)

# Infeasible Solutions 0 0 1 0 0 6 34

Average Ranking 2.84 6.13 1.86 3.75 5.35 6.32 1.76
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Table 4
The top fifteen constructed sequences of low-level heuristics
while solving the first stage of D3-I1 and D17-I1 instances
using the developed simulator

D3-I1 D17-I1

Sequence Count Sequence Count

LLH0 507215 LLH0 430487
LLH3 119856 LLH4 183879
LLH1 70442 LLH3 169359
LLH8 57824 LLH8 56044
LLH4 56641 LLH1 38556
LLH6 30429 LLH2 17576
LLH7 25220 LLH6 11567
LLH2 21799 LLH5 10853
LLH5 15428 LLH7 8681
LLH0-LLH0 4925 LLH0-LLH0 2853
LLH7-LLH0 1851 LLH7-LLH0 2836
LLH2-LLH0 1729 LLH2-LLH0 2418
LLH8-LLH0 1516 LLH8-LLH0 1819
LLH2-LLH3 1475 LLH3-LLH3 1385
LLH8-LLH3 1462 LLH7-LLH4 1221
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LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6
LLH7
LLH8

Transition Probability

LLH0 LLH1 LLH2 LLH3 LLH4
LLH5 LLH6 LLH7 LLH8

0 0.2 0.4 0.6 0.8 1
LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6
LLH7
LLH8
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continue end

Figure 7: Average probabilities of the transition and sequence
construction matrices from 10 trials while solving the first stage
of D3-I1

tic to contribute to improving the best-recorded solution in
hand while solving both considered instances. The proposed
SSHH does not take the size of sequences as a parameter, but
rather it learns the optimum size during the optimisation (in
an online manner). Table 4 shows that single heuristics are
dominantly used, although it identified sequences of size 2
as ‘potentially’ useful to the search.
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continue end

Figure 8: Average probabilities of the transition and sequence
construction matrices from 10 trials while solving the first stage
of D17-I1

6. Conclusion
The level of generality that a hyper-heuristic can achieve
has always been of interest to hyper-heuristic researchers.
To address the multi-stage nurse rostering problem posed
by INRC-II, we develop and exploit a sequence-based se-
lection hyper-heuristic (SSHH) that essentially adopts the
main algorithmic structure of the original SSHH algorithm
[41, 43] and crucially modifies two key components to ad-
dress themulti-stage nurse rostering formulation, namely the
construction of the initial solution and the low-level heuris-
tics. Due to the characteristics of the problem formulation,
a dedicated algorithm for building feasible initial solutions
and a series of low-level heuristics with different character-
istics are developed. The method aims to control the appli-
cation of sequences of heuristics as opposed to a simple se-
lection of a single heuristic. The proposed method is the
best-ranked method to achieve feasibility across all prob-
lems and also the first ranked among general-purpose hy-
per/metaheuristic approaches.
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